
Gamifying a Software Testing Course with Code Defenders
Gordon Fraser, Alessio Gambi, Marvin Kreis

University of Passau
Passau, Germany

{gordon.fraser,alessio.gambi}@uni-passau.de
kreis03@gw.uni-passau.de

José Miguel Rojas
University of Leicester

Leicester, United Kingdom
j.rojas@leicester.ac.uk

ABSTRACT
Software testing is an essential skill for software developers, but
it is challenging to get students engaged in this activity. The Code
Defenders game addresses this problem by letting students compete
over code under test by either introducing faults (“attacking”) or
by writing tests (“defending”) to reveal these faults. In this paper,
we describe how we integrated Code Defenders as a semester-long
activity of an undergraduate and graduate level university course
on software testing. We complemented the regular course sessions
with weekly Code Defenders sessions, addressing challenges such
as selecting suitable code to test, managing games, and assessing
performance. Our experience and our data show that the integration
of Code Defenders was well received by students and led them to
thoroughly practice testing. Positive learning effects are evident as
student performance improved steadily throughout the semester.

CCS CONCEPTS
• Social and professional topics→ Software engineering ed-
ucation; • Software and its engineering → Software testing
and debugging;

KEYWORDS
Software testing education, mutation analysis, testing game, soft-
ware engineering education, unit testing

ACM Reference Format:
Gordon Fraser, Alessio Gambi, Marvin Kreis and José Miguel Rojas. 2019.
Gamifying a Software Testing Course with Code Defenders. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (SIGCSE
’19), February 27-March 2, 2019, Minneapolis, MN, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3287324.3287471

1 INTRODUCTION
Software testing – the activity of systematically executing a pro-
gramwith the aim of finding faults – is an essential skill for software
developers, but it is one they are often not well prepared for. The
2017 Software Fail Watch report [18] describes $1.7 trillion in lost
revenue due to software problems, some of which could have been
avoided with a more thorough approach to testing. This problem

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5890-3/19/02. . . $15.00
https://doi.org/10.1145/3287324.3287471

is rooted in education, where testing unfortunately is a relatively
neglected component of the computer science curriculum [3], and
even when it is taught, then engaging students is challenging. Com-
mon testing theory is heavy on management aspects and lighter on
actual hands-on testing experience. As a result, students perceive
testing as boring and repetitive, and do not acquire the practice and
experience that software testing requires.

Gamification is recently heralded as a means to improve test-
ing, both in education [1, 5] and practice [4, 7, 15]. In the wake of
this trend, the Code Defenders game [16] aims to engage students
with software testing in a competitive and entertaining way. Stu-
dents compete over program code under test by either introducing
software defects that evade the existing test suite (“attacking”), or
by improving the test suite to fend off these attacks (“defending”).
There is evidence that the game is engaging and players write
better tests than outside the game [17], and there is anecdotal evi-
dence of individual Code Defenders sessions being used to spice up
university courses. However, to really provide learning effects we
argue that Code Defenders should be integrated more tightly as a
semester-long activity of software engineering and testing courses.

In this paper, we describe our integration of Code Defenders into
a course on software testing taught at undergraduate and graduate
level. Such an integration causes numerous challenges: There are
organisational challenges, such as managing games with fluctua-
tions in student attendance; technical challenges, such as scaling up
the game to large classes and coping with students trying to find
ways to cheat or break the system; and pedagogical challenges, such
as ensuring fairness and grading student participation. We describe
how we overcame these challenges, and use the data collected from
the first instance of the course, taken by 123 students who played a
total of 197 team-based games, to provide detailed insights into the
behaviour of the students, their engagement, and their satisfaction.
The data from our experience provides the following insights:
RQ1: How do students engage with the game? Students ac-
tively participate and practice their testing skills. On average, stu-
dents wrote 120.54 tests (with a maximum of 350), and inserted
158.66 artificial faults (maximum of 515).
RQ2: Does student performance improve over time? Students
improved their testing performance throughout the course. We
observed a moderate correlation of 0.51 between the number of
sessions played and the quality of the tests.
RQ3: Does student engagement correlate with exam grades?
We observed a moderate correlation of -0.58 between the number
of tests written in the game and exam marks, suggesting that better
students are more active players.
RQ4: Do students appreciate using Code Defenders in class?
In a survey students commented very favourably about their expe-
rience, and agreed that the integration is useful and fun.

https://doi.org/10.1145/3287324.3287471
https://doi.org/10.1145/3287324.3287471

Figure 1: The Code Defenders game in action.

2 THE CODE DEFENDERS GAME
Two challenging activities in software testing are (1) assessing how
well a program is tested by the current test suite, and (2) improving
the test suite by creating additional tests. Code Defenders [16] is a
game intended to engage students in these activities in the context
of a Java object-oriented class under test and its test suite: Attackers
aim to introduce artificial bugs into the class under test that reveal
weaknesses in the test suite, while defenders aim to improve the
test suite by adding tests. Since this process resembles the software
testing technique of mutation analysis [2], the artificial bugs are
called mutants. If a test which passes on the original program fails
on a mutant, then that mutant is detected and the defender scores
points, whereas the attacker scores points if the mutant is not
detected. The number of points a mutant is worth depends on the
number of tests it “survives”, which further encourages players to
create as subtle as possible mutants, and as strong as possible tests.

Attackers can create mutants that are syntactically different
but semantically equivalent to the original program. In mutation
analysis, this is known as the equivalent mutant problem [10], and
equivalent mutants cannot be detected by tests by definition. Equiv-
alent mutants may be used by attackers by accident, or intentionally
as part of their strategy. If defenders cannot succeed in detecting a
mutant and suspect it might be equivalent, then they can flag the
mutant and trigger an “equivalence duel”. This equivalence duel
has to be resolved by the attacker who created the mutant, either
by proving non-equivalence by providing a test that detects the
mutant, or by revealing their bluff and accepting that the mutant is
indeed equivalent – thus losing all points earned for the mutant.

Code Defenders is implemented as a web-based game (shown in
Figure 1), and can be played in teams or pairs. Players get to see
the source code of the Java class under test, with colour highlight-
ing to indicate the coverage of the defenders’ test suite, and with
bug-shaped icons labelling the locations and status of the attackers’
mutants. Attackers can create mutants by editing the source code
of the Java class, and defenders have a code editor to write tests
using the JUnit [11], which is the de-facto standard test automa-
tion framework for the Java programming language. Besides the
information displayed with the class under test (code, coverage,
and mutant locations), defenders get to see all tests that have been

submitted in the game, while attackers see all mutants. There is
also a scoreboard that breaks down the game’s current score for
each team and player and summarises the status of the mutants.

Whenever humans play games, it is natural that they will try to
cheat and bend the rules to their own advantage. Code Defenders
uses rules, heuristics, and restrictions to avoid unfair mutants and
tests. For example, it does not allow addition of new if-conditions
into the code, because that would make it easy to create mutants
that cannot reasonably be detected by a test without knowledge
of the change (e.g., by comparing a variable against an arbitrary
numeric value that a tester would hardly guess). Similarly, the re-
strictions prevent tricks with logical operators, bitshift operators,
casts, and include some further specialised restrictions. There are
fewer restrictions on defender actions; to ensure that players pro-
duce tests like they would in practice (e.g., [13]), the number of
JUnit-assertions per test is limited, with a default value of two.

By default, Code Defenders counts unresolved equivalence duels
as lost for the attacker after a game ends. To prevent that players
exploit this (e.g., by waiting until seconds before the end of the
game beforemarkingmutants as equivalent), “grace periods”, where
the possible game actions are gradually reduced, can be used. If
the game duration is too small to include grace periods (as in our
case), Code Defenders can also be configured to ignore unresolved
equivalence duels, but force attackers to handle equivalence duels
before being allowed to submit new mutants.

3 CODE DEFENDERS IN THE CLASSROOM
3.1 Course Organisation
The context of our Code Defenders integration is a regular software
testing course, organised around the standardised International Soft-
ware Testing Qualification Board (ISTQB) foundation level tester
curriculum [8], plus additional material on more advanced testing
techniques. Thus, it consists of regular theoretical lectures, and
weekly exercise sessions with exercise sheets featuring examples
related to the theory, and introducing the technologies implement-
ing the theoretical concepts, including JUnit. We extended this
standard course design with weekly two-academic-hour practical
session, throughout the whole semester [6]. These practical sessions
featured the use of Code Defenders in the computer lab.

Each practical session revolved around one dedicated Java class
under test, on which students competed in teams. In the first ses-
sion each student took the role of attacker and defender once each;
in all successive sessions students participated only in one game,
alternating between attacker and defender roles weekly. We boot-
strapped each session with a couple of minutes of explanations of
the class under test, and also provided some examples of how to
write tests to speed up the code understanding phase.

A difficult challenge for the instructor is the selection of appro-
priate Java classes under test. If a class is too complex, it makes it
more challenging for defenders to create good tests, thus allowing
the attackers to safely mutate untested code, rather than having to
think about how to evade the existing tests and reason about the
effectiveness and fault finding potential of the existing tests. On the
other hand, if a class is too simple, then the defenders can quickly
produce a test suite that covers all testable behaviour, leaving the
attackers frustrated and with little room to make changes that are

Table 1: Java classes used in the 12 Code Defenders sessions.

ID Class Project LOC Methods Fields

1 Lift Custom 53 12 5
2 Complex Math4J 103 24 3
3 Rational Dittrich Java Intro 114 17 3
4 Option Apache Commons CLI 260 41 13
5 XmlElement Inspirento 221 33 6
6 SparseIntArray Android 161 22 5
7 IntHashMap Apache Commons Lang 148 14 5
8 ByteVector Objectweb ASM 154 12 3
9 CharRange Apache Commons Lang 87 17 5
10 CaseInsensitiveString Squirrel SQL 177 10 8
11 Document Apache Lucene 113 15 6
12 Options Apache Commons CLI 139 16 5

not immediately found. Additionally, the complexity of the chosen
classes under test gradually needs to increase over the course of the
semester, to keep students appropriately challenged while they are
improving their testing skills. While there are some standard code
metrics that can support the selection (e.g., lines of code), ultimately
judging the difficulty of testing a class is down to experience. There
are also technical considerations, for example since Code Defenders
offers no support for players to explore dependency classes.

Table 1 summarises the classes we used in the 12 sessions. We
created the Lift class specifically to introduce Code Defenders.
For successive sessions we selected real classes from open-source
projects to increase motivation. To avoid that students find the origi-
nal project online and use its tests, we removed context information,
e.g., package name. For the two sessions following the introduction
session we used classes implementing mathematical concepts famil-
iar to students (Rational and Complex), thus allowing interesting
gameplay to emerge more quickly. For the remaining sessions we
selected pairs of classes that are somewhat similar in nature, so
that each student would play as attacker and defender on similarly
complex classes. Data structures are particularly well suited since
they usually have no dependencies, and students are familiar with
the general concept. We also included more specialised classes to
increase the level of difficulty and challenge the students. In the
last two sessions we used classes that had simple dependencies,
but replaced the dependencies with a skeleton interface, such that
players were forced to use Java mocking frameworks in their tests.

Although students closely followed their game scores in the
overall leaderboard, the score is not suitable as a means for assess-
ment since it depends on many factors beyond the abilities of an
individual student (e.g., the abilities and actions of the other players
in the game or the use of unfair techniques in the game). We made
the Code Defenders sessions count for 10% of the overall course
grade, and graded them based on the level of participation. Students
were expected to participate in at least 10 out of 12 sessions, and
would be awarded one point for each active game participation
(capped at 10 points). For each Java class we determined thresholds
for the number of tests and mutants that represented “active” par-
ticipation; to determine the number of suitable tests/mutants we
cross-checked all tests and mutants on all games for the same class
to remove any bias caused by the specific game context. A test is
counted if it compiles, passes on the original version of the Java
class, and detects at least one mutant; a mutant is counted if it is
non-equivalent (i.e., detected by at least one test).

3.2 Game Management
There are several challenges when managing regular sessions with
Code Defenders. First, it is desirable that only students physically
present in the lab participate in the games. Second, fluctuations
in student attendance make it difficult to set up games prior to
the actual practical sessions. This was made even more difficult by
restrictions in our lab size (40 computers only), which required us
to run three smaller successive sessions each week (in which some
students worked on their own laptops). We therefore started each
session by taking attendance, and then creating a set of games only
for the students present in that session. We extended Code Defend-
ers with an administrative interface that supports this process.

Once the students present in a lab session are known, games
need to be balanced for a number of factors: First, each student
should alternate weekly between attacker and defender roles. Sec-
ond, there is substantial variation in the skills of students, which
may negatively affect games. For example, if a particularly strong
defender plays a game where the other players are not so skilled,
then that defender would dominate the testing tasks. This might
frustrate the other defenders who get fewer chances to reveal mu-
tants, and would make it difficult for attackers to score points. To
avoid this issue, we ranked students by their game scores achieved
in previous games before creating games, such that students with
similar scores (and thus hopefully similar abilities) were teamed up.

We aimed for games with 3 attackers vs. 3 defenders since we
observed good game dynamics with these team sizes in the past
(for smaller teams it takes longer for mutants and tests to properly
interact; for larger teams there tend to be players who cannot, or
decide not to, keep up with their team mates). However, we allowed
for some variation to accommodate for variations in attendance;
in particular, we often made teams of weaker students larger to
balance out games. We also used latecomers to equilibrate unbal-
anced games, e.g., by supporting the losing side with an additional
player. Our administrative interface allows monitoring of running
games, so that we could react to obvious problems. For example,
sometimes defending teams would take long before creating the
first test, in which case we located the students in the lab and tried
to help. Although we aimed to use the full academic two hours (2
× 45 minutes) for the game, we would usually end games slightly
earlier. Once a game is finished, students get to see all tests and
mutants, allowing them to reflect, which often led to interesting and
active debates among groups of students. Effectively, this means
that games lasted on average around 70 minutes.

4 EVALUATION
To evaluate whether Code Defenders can be integrated into a testing
course in a way that is beneficial and engaging for students, we
investigate the following research questions:
RQ1: How do students engage with the game?
RQ2: Does student performance improve over time?
RQ3: Does student engagement correlate with exam grades?
RQ4: Do students appreciate using Code Defenders in class?

4.1 Experimental Setup
We collected data while running the course at University of Passau
in the winter semester 2017/2018. We deployed our own installation

15% 35% 5% 15% 13% 17%

4% 16% 20% 16% 23% 20% 1%General

Java

0 25 50 75 100

None
1 year or less

2 years
3 years

4 years
5−10 years

More than 10 years

Figure 2: Students’ programming experience.

Table 2: Game statistics.

Class Games Wins Averages per Game
Att. Def. Draw Players Tests Mutants Duels

1 41 29 12 2 4.02 8.15 25.09 1.26
2 19 15 4 0 6.05 19.53 80.37 5.89
3 15 13 2 0 6.67 42.73 113.00 16.93
4 17 14 2 1 6.47 45.71 84.47 9.24
5 17 10 7 0 6.41 39.41 101.47 6.59
6 14 13 1 0 7.14 45.71 96.50 11.93
7 15 13 2 0 6.47 54.20 86.47 18.13
8 13 12 1 0 6.31 52.62 118.46 12.92
9 13 6 7 0 6.62 64.85 64.23 11.77
10 14 12 2 0 6.21 39.21 100.21 14.57
11 12 9 3 0 6.75 40.83 56.50 10.67
12 7 3 4 0 6.43 30.86 88.14 7.43

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

0

100

200

Valid
Tests

Failing
Tests

Uncompilable
Tests

Tests
Scoring
Points

Useful
Tests

Equivalence
Duels

Challenged

Figure 3: Statistics of defender actions per player; boxplots
show quartiles, violinplots show distribution density.

of Code Defenders rather than using the public version, since (1) a
large number of students would quickly hit the limits of the public
server, (2) we wanted to avoid interactions between students and
external remote players, and (3) we wanted to prevent students
from creating their own games instead of focussing on the tasks
set by us. The course was available to undergraduate and graduate
students. In total, it was taken by 123 students (34 female, 89 male),
of which 52 were undergraduate students and 71 were at graduate
level. The average semester for undergraduate (bachelor) students
was 5.77, and for graduate (master) students 1.83, which means that
most students were in the final year of their degree. Figure 2 shows
the programming experience of the students: 80% of the students
declared to have more than two years of general programming
experience, while almost half had only recently started using Java
(1 year or less) or had not used Java before at all. Consequently, in
the initial sessions we had to provide general programming support
to some of the students. It is desirable for players to have reasonable
Java experience so they can focus on the game.

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●●●●
●
●

●●
●

●
●

●●●●●●●●●●0

100

200

300

400

500

Valid
Mutants

Invalid
Mutants

Detected
Mutants

Detectable
Mutants

Mutants
Scoring
Points

Equiv.
Duels
Lost

Equiv.
Duels
Won

Figure 4: Statistics of attacker actions per player; boxplots
show quartiles, violinplots show distribution density.

In total, the students played 197 games on the 12 classes, sum-
marised in Table 2. On the first class, each student played two
warm-up games to experience both player roles, resulting in a
higher number of games. Because points for active participation
were capped at 10, the last class resulted in fewer participants and
games. More games were won by attackers; we conjecture that this
is because we did not deduct points for unresolved equivalence
duels after games ended, as Code Defenders would normally do
when using grace periods. On average, games were played with
teams of three players each (i.e., 3 vs. 3 games).

4.2 RQ1: Student activities
We assess engagement by analysing the students’ actions through-
out the course. On average, each student participated in 8.66/12
sessions, and submitted 120.54 tests and 158.66 mutants over all
games (average of 19.11 test per game per student, and 35.92 mu-
tants per game per student). These numbers varied across games
(see Table 2), with a maximum of 91 tests submitted by a student
playing as defender in a single game, and amaximum of 157mutants
submitted by a student playing as attacker in a single game. In total,
18 students did not attend any of the last 6 (out of 12) game sessions,
which suggests they abandoned the (optional) course prematurely.

Figure 3 provides more details on the actions performed by stu-
dents playing as defenders. Although the majority of submitted
tests were valid (i.e., compile and pass on the original class under
test), a large number of them either had compilation errors or re-
sulted in a failure when run on the original class under test (i.e., had
incorrect test oracles). We conjecture that a common strategy to
support the understanding of the code is to run a test and observe
the behaviour based on the resulting test failure. On average, 37%
of all valid tests scored at least one point, i.e., detected a previously
undetected mutant. However, on average 98% of the valid tests have
the potential to detect a mutant, and are counted as useful during
grading. Finally, as expected the number of equivalence duels chal-
lenged is much lower than the number of tests submitted per game,
although it increased over time as students gained experience.

Figure 4 summarises the actions performed by students when
playing as attackers. In contrast to test submissions, the number
of erroneous mutant submissions (compilation errors, violations of
the constraints on mutations, or duplicate submission of already
existing mutants) is much lower than the number of successful

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12
Class

C
ov

er
ag

e

Figure 5: Code coverage achieved throughout the semester.

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12
Class

M
ut

at
io

n
S

co
re

Figure 6: Mutation scores (measured with the Major muta-
tion tool [12]) achieved throughout the semester.

submissions. This is not surprising since a mutant is valid if it fol-
lows basic syntactic rules. On average, 64% of the valid mutants
were detected by the defenders’ tests. By executing all tests from
all games on the mutants we can estimate how many could have
been detected; on average, 85% of the valid mutants could have
been detected, showing that there is ample potential for defenders
to further improve; this suggests that defenders might have needed
more time, a better way of communication to organising the de-
fense, or that teams of defenders could be made larger. A mutant is
only useful if it “survives” at least one test (i.e., is covered but not
detected) and thus scores at least one point. On average, 75% of the
valid mutants scored at least one point, while the remaining valid
mutants either were not covered by any tests, or were accepted as
equivalent; the plot suggests that only a small ratio of the mutants
were accepted as equivalent. More equivalence duels were lost than
won, indicating that attackers either accepted more equivalences
or struggled to produce mutant-detecting tests themselves.

Overall our average results indicate that most students engaged
well both when playing as attackers and as defenders.

4.3 RQ2: Improvement throughout semester
To determine whether student performance improved throughout
the course, we look at the quality of the test suites and mutants
resulting from each game. In contrast to RQ1, for this we need an
objective measurement of quality that is not dependent on player
actions. For tests, the standard metrics are code coverage and muta-
tion score. Code coverage measures how much of the source code
has been executed by a given test suite. Complementary to this, the
mutation score measures how good the test suite is at detecting a
systematically produced set of mutants. We expect that students
playing Code Defenders over time will gain more experience and
produce test suites that cover more code and detect more mutants.

0
1
3

10

30

100

300

1000

Te
st

s
D

et
ec

tin
g

ea
ch

 M
ut

an
t (

lo
g)

Type of mutants Major Manual

0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10 11 12
Class

A1
2

Figure 7: Mutant detection rate throughout the semester.

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●
●

0

50

100

150

200

250

1 2 3 4 5
Exam Grade

To
ta

l n
um

be
r

of
 te

st
s

(a) Test submissions vs. exam grades.

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●● ●●

●●

●

●

●
●

●

●

●
●

●

●

0

100

200

300

400

500

1 2 3 4 5
Exam Grade

To
ta

l n
um

be
r

of
 m

ut
an

ts

(b) Mutant submissions vs. exam grades.

Figure 8: Correlation of exam scores with player actions.

We used JaCoCo [9] to measure branch coverage per game, i.e.,
on the test suites consisting of all the tests for a game. Figure 5 shows
the overall branch coverage achieved per game. Even though the
classes under test gradually became more complex and challenging,
a clear increase in the coverage throughout the semester is visible,
suggesting an improvement in students’ testing skills (Pearson’s
correlation between session number and coverage is 0.51, p-value
< 0.001). We measured the mutation scores on the same test suites
using the Major mutation tool [12]. Figure 6 confirms the trend
already observed in the coverage data (correlation between session
number and mutation score is 0.47, p-value < 0.001).

For mutants, determining whether there is an improvement is
more challenging, since there is no standard metric of mutant qual-
ity. In general, we expect that (detectable) mutants are better if
they are more subtle, i.e., if there are fewer tests that detect them.
However, the tests written as part of the game are influenced by
the mutants, which may skew such a measurement. Therefore, we
follow the procedure used by Rojas et al. [17] to estimate mutant
quality: For each Java class, we use the Randoop [14] test genera-
tor to produce 1,000 random tests. Then, we execute each mutant
against each random test and count how many tests detect the
mutant – the fewer, the harder to detect the mutant is. Since the
performance of Randoop may vary across different classes, we use
Major [12] to automatically produce a set of baseline mutants on
which we also measure the hardness with the 1,000 random tests.
This enables us to estimate student advancement in terms of the
relative performance of the mutants compared to Major mutants.

7%

4%

4%

8%

17%

12%

16%

20%

13%

87%

85%

84%

83%

77%

73%

72%

60%

48%

7%

11%

12%

9%

5%

15%

12%

20%

39%

The choice of Java classes under test was suitable

The effort is well balanced with the influence on the mark

The number of sessions was appropriate

Including Code Defenders in a university course is appropriate

I learned/practised useful skills when playing as an attacker

I learned/practised useful skills when playing as a defender

Writing unit tests in the game is more fun than while coding

I enjoy writing tests even when it is not part of a game

I enjoyed playing Code Defenders

100 50 0 50 100

Fully disagree Partially disagree Neither agree nor disagree Partially agree Fully agree

Figure 9: Exit survey responses.

Figure 7 shows the number of tests that detect each of the mu-
tants for the two categories: manual (student-written) and Major
mutants). While initially students produced mutants that were de-
tected by more tests, the median mutant quality slowly improved
and from week six onwards the student-written mutants are better
than the ones produced byMajor. One exception is the ninth session
(class CharRange), where the student-written mutants appear to be
substantially worse. A closer look reveals that, in this class, changes
to certain statements in the constructor lead to state changes that
are detected by almost any test, and students happened to mutate
these statements quite thoroughly, leading to more easy-to-detect
mutants than the Major tool. Figure 7 statistically compares the
mutant quality of the two types of mutants using the Â12 Vargha-
Delaney effect size measurement; a value of < 0.5 in this case means
that the student-written mutants are better. The Pearson correlation
between the number of the session and the Â12 effect size is −0.6
(p-value = 0.04), showing that although effect sizes are small, there
is a statistically significant improvement throughout the semester.

4.4 RQ3: Game activity vs. exam grades
In order to establish whether there is a relation between player
engagement and final exam mark, we calculate the Pearson cor-
relation between test/mutant submissions and the overall grade
achieved on the end-of-term written exam. Exam grades are given
on a scale of 1–5 (with intermediate steps of .3 and .7), with 1 being
the best mark, and 5 being a fail. Figure 8(a) and Figure 8(b) show
the correlation between the number of defender actions and mu-
tant submissions, respectively, and the resulting final term exam
grade (the exam was taken by 97 students). For both player roles
there is a moderate correlation of -0.58 and -0.38, respectively (both
p-values < 0.001), confirming that better students are more active
players. The correlation is higher for test submissions, which is
likely because it is easier to submit a mutant even without fully
understanding the code and the tests. While we cannot conclude
from this whether the game influences the exam marks without
further experimentation, the relation of in-game performance and
exam performance suggests that including Code Defenders game-
play in the grading is indeed appropriate, which is a prerequisite
for making the game a mandatory part of a testing course.

4.5 RQ4: Student satisfaction
After the last Code Defenders session, we ran an anonymous survey
among the students, in which we asked them to reflect on their ex-
perience and satisfaction with the Code Defenders integration. We
announced the survey in-class and via email, and allowed students

to voluntarily complete it in their own time. In total, 75 students re-
sponded to the survey. Figure 9 summarises the main questions (we
omit feedback on how to improve the Code Defenders game itself
as it falls out of the scope of this paper), which are overwhelmingly
positive: Only two students did not like the integration, and three
partially disliked it; the free-text responses suggest that the main
points of criticism are limitations of the code editor, performance
issues, and a desire to integrate more diverse testing concepts from
the lectures into the game sessions, rather than just unit testing.

Although students tend to claim they do like to write tests even
outside the game, they confirm it is more fun to do so as part
of the game. A vast majority of students felt that they learned
useful skills while playing as defender, and while they still agree
that they learn useful skills when playing as attacker, there is less
agreement compared to the defender role. This is in line with our
observations of students submittingmutants with less consideration
compared to tests. Students felt that using a game in a university
course is appropriate; while the majority of students felt the number
of sessions was appropriate, 17% of them disagreed on this. The
explanations in the free-text responses reveal that a few students
thought the tasks became a bit repetitive, and they would have liked
to see more challenging classes over time. Even though the game
sessions required no preparation time for the students, 16% of them
thought that being awarded 10% of the overall course mark for the
game sessions was not appropriately balanced (according to free-
text responses it should contribute more), although the majority
was satisfied with this marking decision. Finally, on balance the
students were satisfied with the choice of classes under test and
even suggested more challenging classes could have been used.

5 CONCLUSIONS
Overall, students engaged actively and enjoyed playing Code De-
fenders as part of our gamified testing course, while at the same time
improving their testing skills. This positive outcome encourages us
to continue using Code Defenders in the future, and we hope this
experience report will inspire and assist other educators to integrate
Code Defenders as an educational resource as part of their own soft-
ware testing courses. Code Defenders is open-source and available
on GitHub: https://github.com/CodeDefenders. A public installation
is also available to play online at http://code-defenders.org.

ACKNOWLEDGEMENTS
This research has been supported by the European Commission
through Erasmus+ project IMPRESS 2017-1-NL01-KA203-035259.

https://github.com/CodeDefenders
http://code-defenders.org

REFERENCES
[1] Jonathan Bell, Swapneel Sheth, and Gail Kaiser. 2011. Secret ninja testing with

HALO software engineering. In Proceedings of the 4th international workshop on
Social software engineering. ACM, 43–47.

[2] Timothy Alan Budd. 1980. Mutation Analysis of Program Test Data. Ph.D. Disser-
tation. Yale University, New Haven, CT, USA.

[3] David Carrington. 1997. Teaching software testing. In Proceedings of the 2nd
Australasian Conference on Computer Science Education. ACM, ACM, 59–64.

[4] Tommaso Dal Sasso, Andrea Mocci, Michele Lanza, and Ebrisa Mastrodicasa.
2017. How to gamify software engineering. In Software Analysis, Evolution and
Reengineering (SANER), 2017 IEEE 24th International Conference on. IEEE, 261–271.

[5] Sebastian Elbaum, Suzette Person, Jon Dokulil, and Matt Jorde. 2007. Bug hunt:
Making early software testing lessons engaging and affordable. In ACM/IEEE Int.
Conference on Software Engineering (ICSE). 688–697.

[6] Gordon Fraser, Alessio Gambi, and José Miguel Rojas. 2018. A Preliminary Report
on Gamifying a Software Testing Course with the Code Defenders Testing Game.
In Proceedings of the 3rd European Conference of Software Engineering Education.
ACM, 50–54.

[7] Félix García, Oscar Pedreira, Mario Piattini, Ana Cerdeira-Pena, and Miguel
Penabad. 2017. A framework for gamification in software engineering. Journal
of Systems and Software 132 (2017), 21–40.

[8] International Software Testing Qualification Board (ISTQB). 2011. Certified Tester
Foundation Level Syllabus. https://www.istqb.org/downloads/send/2-foundation-
level-documents/3-foundation-level-syllabus-2011.html4.

[9] JaCoCo. 2018. JaCoCo Java Code Coverage Library. https://www.eclemma.org/
jacoco/. [Online; accessed October 27, 2018].

[10] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions of Software Engineering 37, 5 (2011), 649–678.
https://doi.org/10.1109/TSE.2010.62

[11] JUnit. 2018. JUnit. https://junit.org/junit4/. [Online; accessed October 27, 2018].
[12] René Just. 2014. The Major mutation framework: Efficient and scalable mutation

analysis for Java. In ACM Int. Symposium on Software Testing and Analysis (ISSTA).
433–436.

[13] Gerard Meszaros. 2007. xUnit test patterns: Refactoring test code. Pearson Educa-
tion.

[14] Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball. 2007.
Feedback-directed random test generation. In Proceedings of the 29th international
conference on Software Engineering. IEEE Computer Society, 75–84.

[15] Reza Meimandi Parizi. 2016. On the gamification of human-centric traceability
tasks in software testing and coding. In Software Engineering Research, Manage-
ment and Applications (SERA), 2016 IEEE 14th International Conference on. IEEE,
193–200.

[16] José Miguel Rojas and Gordon Fraser. 2016. Code Defenders: A Mutation Testing
Game. In The 11th International Workshop on Mutation Analysis. IEEE, 162–167.

[17] José Miguel Rojas, Thomas D White, Benjamin S Clegg, and Gordon Fraser.
2017. Code Defenders: Crowdsourcing effective tests and subtle mutants with
a mutation testing game. In Proceedings of the 39th International Conference on
Software Engineering. IEEE Press, 677–688.

[18] Tricentis. 2017. Software Fail Watch: 5th Edition. https://www.tricentis.com/
software-fail-watch/. [Online; accessed October 27, 2018].

https://www.eclemma.org/jacoco/
https://www.eclemma.org/jacoco/
https://doi.org/10.1109/TSE.2010.62
https://junit.org/junit4/
https://www.tricentis.com/software-fail-watch/
https://www.tricentis.com/software-fail-watch/

	Abstract
	1 Introduction
	2 The Code Defenders Game
	3 Code Defenders in the Classroom
	3.1 Course Organisation
	3.2 Game Management

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ1: Student activities
	4.3 RQ2: Improvement throughout semester
	4.4 RQ3: Game activity vs. exam grades
	4.5 RQ4: Student satisfaction

	5 Conclusions
	References

