
Improving Engagement of
Students in Software

Engineering

E R A S M U S +
Project 2017-1-NL01-KA203-035259

Tanja E. J. Vos
Open Universiteit

Universidad Politecnica de Valencia

https://impress-project.eu/

https://impress-project.eu/

An EU-funded project aiming at improving students’
engagement in Software Engineering courses through
gamification.

https://impress-project.eu/

: about the project

https://impress-project.eu/

Software is everywhere

Failing software is everywhere

2017 stats effects:
(3.7 billion people)

$1.7 trillion in assets

Consequences of failing software get
worse

Software engineering stakeholders

* Customers want to have quality products

* Bosses want to make money

* Engineers want to program wonders

Software engineering stakeholders

* Customers want to have quality products

* Bosses want to make money

* Engineers want to program wonders

What should we teach
students?

Teaching/learning programming is fun

* Create something!

* Solve puzzles!

* See it work!

* Different solutions

Pex (Microsoft)

Scratch

Lego

Software engineering

* Customers want to have quality products

* Bosses want to make money

* Engineers want to program wonders

But…… engineers should not only program

They also need to test the modules they build

... and invest in formalizing the modules’ specification

Not only programming…
we need to teach software engineering

* waterfall, iterative, agile
* requirements, architecture, ….
* 14 UML diagram types
* 23 design patterns
* over 80 refactorings
* Testing
* Security
* ….
* …
* …

Fo
r e

xa
m

pl
e

Fo
r e

xa
m

pl
e

IMPRESS

• Can gamification improve the engagement in SE
courses?

• Different level of gamification:

• Gamified class room SE quizzes

• SE education games

• Two additional aspects: integrated analytics and
AI/automation to reduce teachers’ effort.

Quizzes

kahoot.it

https://play.kahoot.it/#/?quizId=3a549d3a-c964-47d5-ad6c-c80f01964206

https://play.kahoot.it/

IMPRESS result 1

Quizzes on:

* Testing

* Introduction Software Engineering

* Security

* Formal specifications

* Java programming

* Software architecture

Games to learn testing

code-defenders.org

int abs(int x) {
if (x >= 0)

return x;
else

return -x;
}

int abs(int x) {
if (x >= 0)

return x;
else

return -x;
}

@Test
void testAbs() {

int res = abs(42);
assertEquals(42,

res);
}

Mutation Testing
1970’s — DeMillo (Georgia Tech), Lipton (Princeton), Sayward (Yale)

int abs(int x) {
if (x >= 0)

return x;
else

return -x;
}

int abs(int x) {
if (x >= 0)

return x;
else

return -x;
}

@Test
void testAbs() {

int res = abs(42);
assertEquals(42,

res);
}

int abs(int x) {
if (x <= 0)

return x;
else

return -x;
}

Mutation Testing
1970’s — DeMillo (Georgia Tech), Lipton (Princeton), Sayward (Yale)

int abs(int x) {
if (x >= 0)

return x;
else

return -x;
}

int abs(int x) {
if (x >= 0)

return x;
else

return -x;
}

@Test
void testAbs() {

int res = abs(42);
assertEquals(42,

res);
}

int abs(int x) {
if (x >= 0)

return x;
else

return +x;
}

Mutation Testing
1970’s — DeMillo (Georgia Tech), Lipton (Princeton), Sayward (Yale)

@Test
void testAbs() {

int res = abs(42);
assertEquals(42,

res);
}

int abs(int x) {
if (x >= 0)

return x;
else

return -x;
}

int abs(int x) {
if (x >= 0)

return x;
else

return -x;
}

@Test
void test() {

??
}

int abs(int x) {
if (x >= 0)

return x;
else

return +x;
}

Mutation Testing
1970’s — DeMillo (Georgia Tech), Lipton (Princeton), Sayward (Yale)

public class Arithmetics {
public int abs(int x) {

if (x < 0)
return x;

else
return -x;

}
}

Attackers

public class TestArithmetics {
@Test
public void testAbs() {

Arithmetics a;
a = new Arithmetics();
assertEquals(1, a.abs(-1));

}
}

Defenders

public class Arithmetics {
public int abs(int x) {

if (x >= 0)
return x;

else
return -x;

}
}

Class Under Test

Code Defenders

Score points for
surviving mutants

Score points for
effective tests

Equivalent Mutant Duels

no way! here is
a killing test! equivalent!

equivalent!
oh no! :(

Multi-player

Two-player
vs.

Code Defenders

0 20 40 60 80

I enjoyed playing  Code
Defenders

Writing unit tests is  more fun in
the game than during coding

I learned/practiced useful skills

Fully agree Partially agree

Neither agree nor disagree Partially disagree

Survey

Open Challenges

• Communication mechanism to foster collaboration
• Many opportunities to spice up gameplay
• Integrating more technologies (GUI, concurrency, etc.)
• Analysis for grading and intervention
• …

code-defenders.org

IMPRESS result 2

Games to learn to write formal specifications

Informal specifications…. source of bugs..

A lesson in writing formal specifications

* We can write simple expressions:

* constants like 1,2,3

* identifiers like x,y,Students

* properties, e.g. x.age, y.goal

* e1 ⊗ e2 where ⊗ is + , - , * , = , > , ≥ , < , ≤ , ∈

* A simple formula is a simple expression of type Boolean

A lesson in writing formal specifications

* A formula is either:

* a simple formula

* ∀identifier∈simple-expression● formula

* ∃identifier∈simple-expression● formula)

* For example:

* ∀x∈Students● x.age ≥ 16

* ∃x∈Students● x.age = 16

A lesson in writing formal specifications

Let us

kahoot.it

https://play.kahoot.it/#/k/fef8e9b9-d851-4823-95ab-4cac2ad10b45

https://play.kahoot.it/

In production: Formal-Z game

* a game to train student to write formal specifcations interpretable in Java

* will lean more towards the “engagement” aspect

* https://git.science.uu.nl/impresshs/javawlp

From tower defense to computer defense

The concept of Fomal-Z

In production: Formal-Z game

IMPRESS result 3

future work

* Education quizzes and games for Software
Engineering, experimenting with the balance
between “seriousness” and “excitement”.

* Data analytics.

* Studying these innovations in actual class rooms.

