A Preliminary Report on Gamifying a Software Testing Course
with the Code Defenders Testing Game

Gordon Fraser
University of Passau
Passau, Germany
gordon.fraser@uni-passau.de

ABSTRACT

It is challenging to teach software testing in a way that is engaging
for students, and to ensure that they practice effective testing suf-
ficiently. Code Defenders is an educational game that is intended
to address this problem: Students compete over code under test
by either introducing faults (“attacking”) or by writing tests (“de-
fending”). We have integrated Code Defenders as a mandatory
component of a software testing course at the University of Passau,
which featured ten game sessions of two hours each and involved
120 students. In this paper, we describe how this integration took
place and provide some initial insights into our experiences. Code
Defenders and the course material are freely available, allowing oth-
ers to replicate this setup and to gamify their own testing courses.

CCS CONCEPTS

« Social and professional topics — Software engineering ed-
ucation; « Software and its engineering — Software testing
and debugging;

KEYWORDS

Software testing education, mutation analysis, testing game, soft-
ware engineering education, unit testing

ACM Reference Format:

Gordon Fraser, Alessio Gambi, and José Miguel Rojas. 2018. A Preliminary
Report on Gamifying a Software Testing Course with the Code Defenders
Testing Game. In ECSEE’18: European Conference of Software Engineering
Education 2018, June 14-15, 2018, Seeon/ Bavaria, Germany. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3209087.3209103

1 INTRODUCTION

Software testing is an important aspect of software engineering,
but it is not only tedious and error-prone to apply in practice, it
is also difficult to teach and a relatively neglected component of
the computer science curriculum [2]. The common software testing
curriculum, for example described by the International Software
Testing Qualifications Board (ISTQB),! is heavy on management

Ihttp://www.istqb.org

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ECSEE’18, June 14-15, 2018, Seeon/ Bavaria, Germany

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6383-9/18/06...$15.00
https://doi.org/10.1145/3209087.3209103

Alessio Gambi
University of Passau
Passau, Germany
alessio.gambi@uni-passau.de

José Miguel Rojas
University of Leicester
Leicester, United Kingdom
j-rojas@leicester.ac.uk

aspects and lighter on actual hands-on testing experience — due
to its intrinsically heuristic nature, learning software testing re-
quires much more practice than is commonly taught. As a result,
students are often not optimally prepared to test software effec-
tively, contributing to the dire state of software testing in practice.
For example, the 2017 Software Fail Watch report? describes $1.7
trillion in lost revenue due to software problems, some of which
could have been avoided with a more thorough approach to testing.

In order to increase student engagement with software testing,
we have recently introduced the Code Defenders online game [3]
as part of our ongoing work on gamification of testing [?]. In
Code Defenders, players compete over a Java class under test by
either trying to introduce software defects that evade the existing
test suite (“attacking”), or by improving the test suite to fend off
these attacks (“defending”). In previous investigations, we have
established empirically that the game is engaging and players write
better tests than outside the game scenario [4] and we have also
explored the use of Code Defenders to teach fundamental software
testing concepts [?].

In this paper we describe ongoing efforts to integrate Code De-
fenders into a university course on software testing. Such an inte-
gration raises a number of issues that need to be tackled, ranging
from the overall course management, classroom management, han-
dling of individual games, and assessment of student performance.
We provide preliminary insights into how we solved these issues
and some of our findings. We make Code Defenders as well as
all course material available freely, in order to help making other
software testing courses more exciting, and we hope that it will
also see adoption outside university courses.

2 THE CODE DEFENDERS GAME

Code Defenders [4] is an online game, freely available for play-
ing at http://code-defenders.org. The current implementation
of Code Defenders uses Java as the programming language, and
JUnit® and Mockito?* as the framework for writing tests. These
are informed design choices: Java is arguably the most popular
programming language®, and JUnit and Mockito are the de facto
standard frameworks for unit test automation and mocking in Java.

There are two main game modes: duel, where each game consists
of one attacker and one defender competing in a turn-based fashion,
very much like a traditional board game; and battle, where each
game consists of a team of defenders and a team of attackers that
play without turns. Attackers use a code editor to introduce artificial

https://www.tricentis.com/software-fail-watch/
Shttp://junit.org

“http://site.mockito.org/
Shttps://www.tiobe.com/tiobe-index/

https://doi.org/10.1145/3209087.3209103
https://doi.org/10.1145/3209087.3209103

ECSEE’18, June 14-15, 2018, Seeon/ Bavaria, Germany

&p Code Defenders

= leaderboard help & demoattacker (13) =

G. Fraser et al.

&p Code Defenders

leaderboard help & demodefender (1) =

Game 27 Game 27
ATTACKER:ACTIVE In tH ash Ma p Feedback | Show Scoreboard @ DEFENDER:ACTIVE In tH ash Ma p Feedback | Show Scoreboard @
Existing Mutants Create a mutant here = Class Under Test Write a new JUnit test here 2228
alive (1) killed(1) equivalent(0) puhl;sF;:(‘:F)i?shHlp(mt initialCapacity, float loadFac TS TR APy WD |
Search. L . super();
if (initialCapacity < 0) { SAn import static org.junit.Assert.+;
throw new IllegalArgumentException("Illegal if (initialCapacity < 0) { .
Mutant 141 points: 1 View Diff) throw new IllegalArgumentException ("Il
Creator:) N
P Ty T——————— B it (loadractor < 0) stineiasiap (
[uip:8] Ay e <1 throw new IllegalArgumentException ("L t = 4000)
- o Cent) theous Throuable ¢
sy 0 ¢ ,
Modified line 91 - if (t:::i:::ig - 2.) ¢ et —) o p“t‘:p :?p = new IntHashMap();
. initialC: ity = 1; - - 4
}
T T & e e N ,
T & o o AT LAY this.LoadFactor = LondPactor;
threshold = (int) (initialCapacity * loadFactor table = new Entry[initialCapacity];
N threshold = (int) (initialCapacity * loadl
(10) } (10)

Figure 1: The attacker view

Attackers have detailed information about all mutants created in the game
so far, and use a code editor to create new mutants. The code editor shows
the code coverage achieved by the defending team in terms of coloured
highlighting.

faults (Figure 1). This resembles the idea of mutation testing [1],
where artificial defects are produced automatically. Each “attack”
results in a mutant, which is a version of the Java class under test
that might contain one or more faults. Defenders use a code editor
to write JUnit tests (Figure 2). These tests are then executed on
the mutants produced by the attackers, and whenever a test that
passes on the class under test but fails on a mutant, that mutant is
considered to be detected (“killed”) and is ruled out of the game.

A point scoring system is in place to make the game engaging for
all players: Attackers receive points whenever a mutant “survives”
the execution of a new test; thus, the more tests a mutant survives
the higher becomes its score. Defenders receive points whenever
a new test detects a previously undetected mutant. The number
of points gained by a defender for detecting a mutant equals the
number of points accumulated by that mutant. Therefore, killing
more resilient mutants results in scoring more points by the de-
fenders. At any time, attackers and defenders can view a scoring
table, which breaks down the game’s current score for each team
and player and summarises the status of the mutants: How many
are still alive, how many were killed, and how many are equivalent.

Equivalent mutants represent a particular scenario which can
arise if an attacker produces a version of the class under test that
is syntactically different, but semantically identical to the original
class under test. By definition, equivalent mutants cannot be killed
by any test case, and they can be introduced by attackers acciden-
tally, or intentionally as part of their game strategy. If defenders
cannot succeed in detecting mutants and suspect those might be
equivalent, then they can flag the mutant as suspected equivalent,
triggering an “equivalence duel”. This puts the onus on the attacker
who created that suspected equivalent mutant, who must either
prove non-equivalence by providing a test that kills the mutant, or
reveal a bluff and accept that the mutant is equivalent. Points are
at stake during these equivalence duels.

Two difficulty levels, “easy” and “hard”, determine what players
of each team get to see in the game. For hard games — hard is the

Figure 2: The defender view.

Defenders have detailed information about all tests created in the game so
far, and use a code editor to create new JUnit tests. A code viewer shows the
class under test together with coverage highlighting, and bug markers
denote where the attackers have introduced mutants.

default level we adopted in the course — only partial information
is available: Attackers do not get to see the actual tests written by
defenders, but only the code coverage they achieve; this coverage
is shown using source code highlighting. Defenders do not get to
see the actual code changes applied by attackers, but only their
location in the source code; this is shown by means of “bug” icons
next to changed lines (e.g., see Figure 2). In contrast, in easy games,
all this information is disclosed to all players.

3 CODE DEFENDERS IN THE CLASSROOM
3.1 Context

In the past, we have used Code Defenders for individual motiva-
tional lab sessions with students, but we have not previously made
Code Defenders an integral part of a university course. In the winter
semester 2017/2018 we offered a course on “Software Testing” at
the University of Passau, open to both undergraduate and graduate
students. The course ran for 15 weeks, and each week consisted of a
two-academic-hour lecture, a one-academic-hour exercise session,
and a two-academic-hour practical session. The lectures covered
the International Software Testing Qualification Board (ISTQB)
foundation level tester curriculum [?], plus additional material on
more advanced testing techniques. The exercise sessions described
examples related to the theory, and introduced the technologies im-
plementing the theoretical concepts, including JUnit and Mockito.
The practical sessions featured the use of Code Defenders in the
computer lab. The lab available for the course had 40 computers,
and to accommodate for the interest in the course we decided to
run three groups of 40 students each, for a total of 120 students.

3.2 Technical Setup

The online version of Code Defenders is freely available,® as is
its source code along with setup instructions.” While the public

®http://code-defenders.org
"https://gitlab.infosun.fim.uni-passau.de/gambi/Code-Defenders-Public

A Preliminary Report on Gamifying a Software Testing Course

D Class Creator Attackers Defenders Level Starting Finishing @
IntHas} 15/03/18 18/03/18
309 ! gordon 10f2-4 10f2-4 HARD /03/ /03/ n
Map 17:36 17:36
Name Submissions Points Total Score Switch Role

Action

00h 06m
demoattacker 2 3 94 n
16s
00h 04m
demodefender 1 5 2 49
s

Create single Game

Figure 3: The administrator view.

The administrator view gives an overview of running games, summarising
the game state. In this example, there is one attacker (in red) and one
defender (in blue). For each player the overview shows the number of
points and time of the last action, to help identify struggling students.

installation of Code Defenders is running on a server capable of
hosting games for reasonably-sized classes, in the scope of the
testing course, we decided to use a local installation for two reasons.

First, given more experience and the focused interactions with
Code Defenders over the course of the semester, we expected that
students would over time create many more tests and mutants, thus
hitting the limits of scalability on the public server: Whenever a
new mutant or test is submitted to the game, first it needs to be
compiled, and, then, a potentially large number of test executions
might follow (each test that covers a mutated line needs to be
executed on the mutant.) To avoid this problem, we deployed Code
Defenders on the local computing infrastructure at the University
of Passau.

Second, the public installation of Code Defenders is free and
open to everybody and allows anonymous users to upload new
classes, create new games, and create new users. This is undesired
in the classroom: We want students to focus on the task set by
the instructors without getting distracted playing other games.
Similarly, we want to avoid interactions between the students in
the lab and other remote players. Therefore, in our locally deployed
version of Code Defenders we disabled the features that would allow
students to create new users and games and prevented the access to
the game from outside the computer lab. To support instructors, we
implemented a new administrative interface (Figure 3) to handle
all the classroom related aspects described in this paper.

3.3 Classroom Management

Although there was a schedule of students for each session, there
are natural fluctuations: Students miss their sessions, arrive late
for them, or even request to occasionally join different sessions.
Furthermore, we wanted to supervise students during the lab ses-
sions and thus needed to prevent them from joining games online
from outside the lab. To solve this problem, we started each lab
session by taking attendance and creating a set of games only for
the students present in that session.

When creating games, there are several things to take into ac-
count: First, there are two player roles (attacker and defender), and
students initially tend to prefer starting off as attackers (creating
mutants is often perceived as an easier task than writing unit tests).
To keep the balance, we decided to have each student alternate

ECSEE’18, June 14-15, 2018, Seeon/ Bavaria, Germany

the attacking and defending roles weekly. Second, there is substan-
tial variation in the skills of students, which may negatively affect
games. For example, if a particularly strong defender plays a game
where the other players are not so skilled, then that defender would
dominate the testing tasks. This might frustrate the other defenders
who get fewer chances to kill mutants, and would make it difficult
for attackers to score points. To overcome this problem, we decided
to balance teams in terms of the student abilities; that is, we created
games where students with similar abilities were teamed up. As an
estimate for a player’s ability, we used their scores from previous
Code Defenders games.

All these considerations mean that the initial setup of the lab
session can take several minutes. In particular, the fluctuations of
students and latecomers initially severely disrupted the lab sessions.
By implementing the administrative interface and improving it
over the course of the semester, we drastically reduced the time to
setup the session to a few minutes. In theory, stricter handling of
attendance fluctuations would also allow to prepare the sessions
beforehand, thus removing the setup time entirely.

We aimed for 3 vs. 3 games (i.e., 3 defenders vs. 3 attackers) as
anecdotally we observed good game dynamics in the past with
these team sizes. However, due to the variations caused by atten-
dance fluctuations and the resulting difficulty to achieve balanced
games, we also allowed games with more than three player per
side (up to 5 vs. 5), and games with uneven number of attackers
and defenders (e.g., 3 vs. 5). Once the infrastructure for handling
users had improved enough to dynamically manage games, we
utilised latecomers to equilibrate unbalanced games. For example,
we supported the losing side with an additional player (although
we observed that latecomers tend to be technically weaker students,
and thus did not fundamentally affect the gameplay.)

During the game we would monitor game statistics and react to
obvious problems. For example, if the defenders did not manage to
come up with effective tests we would locate the students in the lab
and try to help them write tests. This was made somewhat more
complicated because we registered students in Code Defenders
using their ids, that is, without keeping track of their real names
(except in an external spreadsheet); in the future we will keep track
of real names in the game as well. In a few cases we also moved
students between running games.® For particularly stale games, we
sometimes joined as players; that is, we would join as attackers and
seed some strong mutants if the attackers did not manage to suffi-
ciently challenge a defender team, or we would join as defenders
to seed some example tests if the defenders were struggling or to
trigger some equivalence duels to keep attackers busy if they had
been flooding the game with many (likely equivalent) mutants.

There were some minor variations in the game time in each
lab session, based on the variations in the actual starting time. We
tended to end the games ten minutes before the end of the lab
session (90 minutes) in order to give students some time to reflect
on the games. In particular, once a game is ended, the defenders
get to see the actual changes of mutants they had not detected,
and that often led to interesting and active debates among groups

81n the current implementation of Code Defenders, migrating students across games
will reset their score.

ECSEE’18, June 14-15, 2018, Seeon/ Bavaria, Germany

of students. Effectively, this means that games lasted on average
around 70 minutes.

3.4 Game Management

Whenever humans play games, it is natural that they will try to
cheat and bend the rules to their own advantage. It is no surprise
that we also observed this during the lab sessions with students.
Code Defenders uses rules, heuristics, and restrictions to avoid
unfair mutants and tests. For example, it does not allow addition of
new if-conditions into the code, because that would make it easy to
create mutants that cannot reasonably be detected by a test without
knowledge of the change (e.g., by comparing a variable against an
arbitrary numeric value that a tester would never guess).

In the first few sessions we noticed many new such scenarios we
had not anticipated (e.g., tricks with bitshift operators or casting).
We observed the reactions of students during the lab, their feedback
(defenders often complain about mutants they find unfair, and
attackers often show off if they discover a new way to game the
system), and the statistics provided by Code Defenders to identify
“cheeky” mutants; consequently, we kept improving the restrictions
until a fair setting was reached (e.g., confirmed by the defending
teams). We also observed some students attempting to use advanced
tricks (e.g., reflection) in their tests. However, unlike tricks applied
by attackers, these advanced techniques in the tests were mainly
explored by particularly strong students who were already good at
“normal” testing. As a consequence, we decided that this was not
an issue but rather a means to keep strong students engaged.

A further issue was caused by equivalent mutant duels: Nor-
mally, any unresolved equivalence duels at the end of the game are
considered as accepted equivalences, such that attackers lose the
corresponding points of these mutants. Code Defenders uses “grace
periods” where the possible game actions are gradually reduced to
avoid unfair defensive strategies like claiming equivalence on all
remaining mutants seconds before the game ends. For example, in
the last couple of minutes it is only possible to resolve equivalence
duels, but not to add new mutants or flag more equivalent mutants.
However, given the short duration of the lab sessions it seemed
infeasible to integrate grace periods. We therefore changed the
game behaviour such that attackers would not lose the points for
unresolved equivalence duels. Further, we changed the game to
force attackers to handle equivalence duels whenever they arose.
That is, attackers were not allowed to submit new mutants until
they had resolved all equivalence duels they had received.

3.5 Course Management

A challenging task for the instructor is the selection of suitable
classes under test. We started off with a simple artificial example
class in the first session to introduce students to Code Defenders;
the class under test was simple enough to play two games in the
first session, so that students experienced both player roles. For all
following sessions, we used classes from open source Java projects,
since we find that the use of real code adds to the motivation of
students. A possible downside of using open source code is that
students might find the original project and use tests written by
its developers. We therefore removed context information (e.g.,

G. Fraser et al.

package name, copyright notice, etc.) that would reveal the source
of the class.

Currently, Code Defenders does not allow players to explore de-
pendency classes and libraries, and so we restricted the selection to
independent classes; i.e., classes that only depended on classes from
the Java standard library (including collections, etc.) To grow the
pool of candidate classes, we eventually also resorted to refactoring
classes to fit with this restriction, e.g., by removing parts of the
code that cause dependencies.

At the same time, it is also challenging to find the right level of
difficulty: On the one hand, if a class is too large, it would take long
until the defenders manage to cover all the code; additionally, the
attackers’ actions become largely detached from what the defenders
do as they always have untested code to “safely” mutate. However,
from an educational viewpoint it is preferable if the attackers have
to think harder about how to evade the existing tests; this is where
we see the main learning effect for attackers, as they reason about
the effectiveness and fault finding potential of the existing tests.
On the other hand, if a class is too small or too simple, then the
defenders would quickly exhaust the testable behaviour, leaving
the attackers frustrated and with little room to make changes that
are not immediately found. Similarly, the complexity of the class
under test needs to increase over the course of the semester, with
the testing skills of the students presumably improving over time.

Following the introduction session, we had two sessions using
similar mathematical classes (a rational number class and a complex
number class). The reason behind this choice was that students
are already well familiar with the underlying concepts, and so
code comprehension becomes much easier, reducing the time it
takes until interesting gameplay emerges. We then selected pairs of
classes that are somewhat similar in complexity and nature, so that
each student would play as attacker and defender on a similar class
in successive weeks. In particular, we found that data structures
are well suited for Code Defenders sessions, since data structures
tend to have no dependencies, and students are familiar with the
general concept of data structures. Nevertheless, we also included
more specialised classes (e.g., components of the Apache Lucene’
search engine) to increase the level of difficulty and challenge the
students. Towards the end of the semester we also included classes
that had dependencies, but omitted the dependencies (except for a
skeleton interface defined as an inner class of the class under test).
The reason for this was to force the use of mocking in the tests.

To reduce the time spent on code comprehension, we boot-
strapped each session with a couple of minutes of explanations
of the class under test for that session, and also provided some
examples of how to write tests for the class under test.

3.6 Assessment

The Code Defenders lab sessions were included in the overall course
grading. Considering that there is almost no required preparation
time for students and the effort mainly consists of attending the
weekly sessions, we decided to make the lab sessions count for
10% of the overall grade (which is proportional to the ECTS effort
compared to the exam). We ignored the initial three sessions for

“https://lucene.apache.org/

A Preliminary Report on Gamifying a Software Testing Course

grading, and for all remaining sessions determined whether stu-
dents participated actively. We did not consider the game score for
evaluating students, since this depends on many factors beyond the
abilities of an individual student (e.g., the abilities and actions of
the other players in the game or the use of unfair techniques in the
game). To alleviate this problem, we analysed the tests and mutants
for each student, and created a full “kill matrix”, i.e., record of which
test detects which mutant. This is currently not supported in Code
Defenders directly, but we plan to integrate the computation of
such a kill matrix in a future version of the game.

Since this was an experimental run of the course, we decided not
to be too restrictive about when to count participation as active:
Attackers were considered active in a session if they produced at
least 5 mutants that were not immediately detected, while defenders
were considered active in a session if they wrote at least 5 compiling
tests that managed to kill some mutants.

4 PRELIMINARY OBSERVATIONS

Over the course of the semester, we have collected data on student
performance, engagement and perception. While a detailed analysis
of the data remains to be done, we can already provide some initial
lessons learned and challenges from our experience.

4.1 Peer Engagement and Communication

It seems that the game succeeded in engaging students at all lev-
els, and we believe that our way to group students by abilities
contributed to this end. Anecdotally, strong students managed to
challenge each other particularly well, with debates often contin-
uing after the lab sessions. Students struggling with more basic
aspects of writing unit tests also benefited from the team-based
nature of the game; for example, as defenders they can see the tests
written by their team mates and learn from them. Consequently,
in the future we plan to improve and extend the communication
options available in the game. Although Code Defenders currently
features a basic instant messaging service, this feature suffered from
technical issues and was not utilised much by the students.

4.2 Engagement Through Competition

During the game play, students see how they perform in terms of
their score, and there is a leaderboard in which they see their overall
performance compared to their peers. Although leaderboards are
sometimes taunted for being an overused gamification mechanism,
we found that students paid more attention to the score than we
had anticipated. Even though we informed them that the score
would not be taken into consideration for grading, we observed
some students explicitly trying to boost their scores by developing
dubious game strategies which we will investigate further.

4.3 Learning Effects

Over the course of the semester, each student wrote dozens to
hundreds of tests and found many injected bugs in realistic code.
This outcome is unlikely to happen in a regular testing course or
software engineering capstone project. For example, when given
traditional tasks such as achieving code coverage, this is typically
done only for individual pieces of code, as it is difficult to keep

ECSEE’18, June 14-15, 2018, Seeon/ Bavaria, Germany

students (and even professional developers) engaged for long in
this activity.

While the defender role clearly leads to testing activities, this is
less obvious for the attacker role: Ideally, it should force students
to think about fault potential and the quality and coverage of exist-
ing tests. However, we occasionally observed students producing
seemingly random mutations without spending much thought on
them. This seems to particularly be the case for students struggling
with program comprehension and effective testing. In the future,
we will consider adapting the game play, for example by requiring
attackers to submit mutants together with a killing test.

4.4 Gradually Increasing Complexity

The repeated use of the game allows to gradually increase com-
plexity of the code under test, and to grow the students’ abilities
over time. We found that the inclusion of mocking techniques into
the game in the last two sessions refreshed interest, and there-
fore we will investigate integration of other more advanced testing
techniques (e.g., integration tests, tests using databases and other
external dependencies, etc.) in Code Defenders.

In general, it is difficult to find the right code complexity for
both player roles, but it is equally difficult to find increasingly
more challenging classes over the course of the semester to keep
students engaged. Since the completion of the course, we have
added a feedback mechanism to Code Defenders. This way, we can
learn what students thought about classes under test and build up
a repository of suitable Java classes for re-use in other courses.

5 CONCLUSIONS

On the whole, the students enjoyed the experience and were well
engaged, so the overall conclusion is very positive. For this reason,
we will use Code Defenders again in future software testing courses.

We invite everyone to try out Code Defenders: It is available
freely online on http://code-defenders.org, and setting up a
local installation for customised use is straightforward.

ACKNOWLEDGEMENTS

This research has been partially financed by the European Com-
mission through Erasmus+ project IMPRESS 2017-1-NL01-KA203-
035259.

REFERENCES

[1] Timothy Alan Budd. 1980. Mutation Analysis of Program Test Data. Ph.D. Disser-
tation. Yale University, New Haven, CT, USA.

[2] David Carrington. 1997. Teaching software testing. In Proceedings of the 2nd
Australasian Conference on Computer Science Education. ACM, 59-64.

[3] José Miguel Rojas and Gordon Fraser. 2015. Code Defenders: A Mutation Testing
Game. In The 11th International Workshop on Mutation Analysis. IEEE. To appear.

[4] José Miguel Rojas, Thomas D White, Benjamin S Clegg, and Gordon Fraser. 2017.
Code Defenders: Crowdsourcing effective tests and subtle mutants with a muta-
tion testing game. In Proceedings of the 39th International Conference on Software
Engineering. IEEE Press, 677-688.

	Abstract
	1 Introduction
	2 The Code Defenders Game
	3 Code Defenders in the Classroom
	3.1 Context
	3.2 Technical Setup
	3.3 Classroom Management
	3.4 Game Management
	3.5 Course Management
	3.6 Assessment

	4 Preliminary Observations
	4.1 Peer Engagement and Communication
	4.2 Engagement Through Competition
	4.3 Learning Effects
	4.4 Gradually Increasing Complexity

	5 Conclusions
	References

