
Can Learning Formal Specification Be Fun?
—Experience and Perspective

I. S. W. B. Prasetya
Utrecht University, Netherlands

s.w.b.prasetya@uu.nl, Orcid: 0000-0002-3421-4635

Craig Q.H.D. Leek
Utrecht University, Netherlands

cqhd.leek@gmail.com

Roan Oosenbrug
Utrecht University, Netherlands

roan.oosenbrug@gmail.com

Petar Kostic
Utrecht University, Netherlands

petarkostic1995@gmail.com

Mike de Vries
Utrecht University, Netherlands

Abstract—Writing formal specifications is a useful skill for
students to develop and to grow a positive mindset towards it.
Unfortunately this is hampered by the stereotyping of formal
method as dry and boring. In this short paper we discuss our
experience in using of a computer game called FormalZ as an
attempt to introduce some fun in teaching the skill. Two setups
are discussed: as an embedded part of a course, and as a loose
tutorial, afterwhich we will conclude with the lessons learned.

Index Terms—teaching formal method, gamification in teach-
ing formal method, gamification in teaching software engineering

I. INTRODUCTION

Writing formal specifications should be part of software
engineering’s good practices. To paraphrase Spivey in his
1989 Introduction to Z and Formal Specifications [1], formal
specifications can provide written and reliable reference point
for developers and testers as to what the functionality they
are supposed to implement and verify. Advances in tech-
nologies since 1989, in particular the rise of model checkers
and automated testing tools, only makes the case stronger.
Having formal specifications would then allow us to verify
the correctness of programs —or at least to automatically test
them. So, why do developers still ignore formal specifications?

Developers typically point out that using formal methods
requires lengthy, and costly, mathematical proofs. Further-
more, many formal methods employ mathematical notations
and concepts alien to programmers; to quote Parnas [2]: ”There
is no quicker way to lose the attention of a room full of
programmers than to show them a mathematical formula”.
These are valid concerns, but they are no longer as big
obstacles as they used to be. The aforementioned technologies
(automated testing etc) mean that writing formal proofs is
no a longer an absolute requirement. True, these technologies
are fundamentally incomplete. But it does not mean that they
are useless. On the contrary, they would greatly strengthen
traditional manual testing, as already evidenced by e.g. success
stories of fuzzing [3]; imagine what it can add if we also
have formal specifications. Knowledge on mathematical nota-
tion is no longer a requirement either. Modern programming
languages like Java or C# incorporate λ-expressions, allowing
mathematical concepts like ∀ and ∃ to be expressed natively

Funded by the EU Erasmus+ grant 2017-1-NL01-KA203-035259.

and cleanly in these languages themselves; Figure 1 shows a
simple example of this.

void getMaxSpec (i n t [] a) {
p r e (a!=null) ;
p r e (a.length > 0) ;

/ / c a l l t o a c t u a l i m p l e m e n t a t i o n
i n t retval = getMax(a) ;

p o s t (exists (a, i −> a[i]==retval)) ;
p o s t (forall (a, i −> a[i]<=retval)) ;

}
Fig. 1. A pre/post-condition specification in Java of a program called getMax
to return the greatest element of an integer array. The syntax x→ e denotes
a λ-expression, specifying (above) a predicate over the indices of an array.

So, if math is no longer an obstacle, why do developers still
ignore formal specifications? There are various explanations
for the situation. Still, some of the blame lies in the Education
itself, for failing to make students enthusiastic about formal
methods, or at least about formal specifications. Students expe-
rience the subject as dry, and they do have a point. Learning to
program is an engaging experience because programs produce
tangible results that evoke one’s sense of satisfaction (e.g.
a program that produces nice Fractal graphics). In contrast,
specifications are predicates. The only value they will produce
is either a ”true” or a ”false”. This is hardly exciting. A
solution might be found in gamification. That is, using games
or elements of games to maximize enjoyment and engagement
in learning [4]. It is at least a hypothesis worth investigating.

In a previous paper [5] we presented a game to train
the basics of writing formal specifications in the form of
pre- and post-conditions called FormalZ1. Unlike existing
Software Engineering themed education games like Pex [6],
Train-Director-B [7], and Code Defenders [8], FormalZ takes
a deeper gamification approach [9], where ’playing’ (doing
things for the fun of it, as opposed to behaving in a fully
goal-driven way) is given a more central role. After all, what
makes games so engaging is not merely the awarded scores
and badges, but also the experience of playing them.

In this paper we will discuss our experience in actually
using FormalZ in teaching in two setups: (1) using the game
alongside a regular course on Software Testing, and (2) as a
separate tutorial session. In Section II we will first explain the
main concepts of FormalZ as in [5], and highlight design de-

1https://github.com/FormalZ

https://github.com/FormalZ

cisions made towards creating a formalization game. Sections
III and IV present and discuss the two setups/cases. Section
V concludes, summarizing the lessons learned.

II. THE DESIGN OF A FORMALIZATION GAME

The functional purpose of FormalZ is to train users to turn
informal specifications of programs into formal pre- and post-
conditions. The teacher provides the informal specifications
along with the corresponding solutions; e.g. this could be an
informal specification of the program in Fig. 1:

”Given a non-empty array a, the program
int getMax(int[] a) returns the greatest element in
the array.”

The student’s task is to construct formulas capturing the pre-
and post-conditions of the program. FormalZ checks if they
are semantically equivalent with the teacher’s solution. The
theorem prover Z3 [10] is used to check this. If this were
all that it does, it would be just as boring as a traditional
quiz, with the only difference that the answer is checked by
the computer. This saves the teacher’s time, but is hardly
exciting for students. While it is possible to improve the
excitement through the usual gamification elements such as
graphics, scores, and badges, we would like to have something
innovative that would trigger students’ curiosity.

To allow more game elements (beyond scores and badges)
to be introduced, we cast the original formalization problem as
a variation of the tower defense game. This provides concepts
such as attackers and defenders, creating conflicts in the game
as an instrument to build excitement. It is also a popular game
genre, hence many users may already be familiar with its
concepts. Figure 2 shows an annotated screenshot of FormalZ,
showing the Printed Circuit Board (PCB) of some computer.
On the PCB, there is a unit called ”CPU” (red encircled in Fig.
2) that has been programmed to implement some functionality
informally described in the Desc-tab (left under). Input and
output wires (bright blue) are connected to/from the CPU,
and they transport data packages. Unfortunately, hackers may
find a way to corrupt the packages. To guard against this,
the PCB has two scanners (white encircled) that the player
can program to identify correct inputs and outputs. In other
words, they must be programmed to reflect the CPU’s pre-
and post-conditions. Data packages not satisfying the scanners
are marked. The player should buy and place defense towers
(yellow encircled) on the PCB to ”destroy” marked packages
before they reach the CPU, or the end of the output wire, if
they are output packages. These defense towers are not directly
related to the game’s learning goal. Instead, they represent
the playful aspect of the game. The game can be completed
without them, if the player manages to build the correct
scanners right away. With towers a player can however last
longer, hence has more opportunities to fix his/her scanners.
Moreover, it is usually more satisfying to see corrupt packages
are being shot at from all sides.

Rather than just providing a dry binary feedback (correc-
t/incorrect), the game gives four types of visual feedback as
well as textual, more technical feedback. The visual feedback

Fig. 2. A screenshot of FormalZ, with its main components annotated.

Fig. 3. Different types of data packages.

comes in the form of the coloring of the incoming/outgoing
data packages; this is summarized in Figure 3. Corrupted
data packages are red; these represent incorrect data. Correct
data are blue. Crossed data packages represent those that
the scanners have marked. So, the presence of marked red
packages and unmarked blue packages visually cue the player
that the scanners are doing well. On the other hand, the
presence of unmarked red packages is a cue to the player
that the corresponding scanner is under specified, whereas the
presence of marked blue packages means that the scanner is
over specified. The textual feedback shows the ’content’ of an
incorrectly marked or incorrectly unmarked data package (in
other words: a counter example) to further help the player to
fix his/her scanners.

Constructionism: To construct the pre- and post-conditions
(the scanners) the student gets a special construction pane (up
and somewhat to the right in Fig. 2) where blocks, representing
either a variable, a constant or an operator, can be placed
and connected to construct a tree representation of a formula;
its so-called Abstract Syntax Tree (AST). Simply typing the
formula is deliberately disallowed. We want students to give
more appreciation to their own formalization effort. Studies
show that one way to do that is by letting the subjects put more
labor into it (also known as the ’IKEA effect’) [11]. Moreover,
this applies the Constructionism theory of learning [12].

The theory believes that humans learn by constructing
knowledge in their mind. Familiar physical objects play a key
role, because the learner already has knowledge on how they
work [13]. Framing new knowledge in terms of interactions
with these familiar objects helps the learner to construct
the new knowledge in his mind. The theory was originally
proposed by Papert and Harel [12]. Papert used LOGO as an

example, which he used to teach programming to children. A
learner can easily relate the ’turtle’ in LOGO with his/her own
physical body which can turn and move forward and draws
upon this analogy to learn LOGO programming concepts.

In FormalZ, the blocks (in the formula building) are visu-
ally depicted as electronic hardware components, which are
existing concepts in the physical world (as opposed to e.g. a
”variable”, which is physically intangible) and are probably
recognizable to most computer science students. Likewise,
the wires that connect the blocks relate well to our physical
experience, where electronic components always need to be
connected by wires. By requiring the user to first locate the
right block, drag it to the construction pane and then explicitly
connect it to other blocks with wires, we enforce more self-
conscious interactions by the user, hence creating a more
gradual and deliberate process of knowledge construction, as
opposed to just letting the user type in formulas.

III. STV CASE: FORMALZ IN A COURSE

We deployed FormalZ to help students train their formal-
ization skill in the course Software Testing and Verification
(STV) at Utrecht Univeristy in 2019. About 70 2nd or 3rd
year Computer Science students participated in the course. The
course takes a half semester in duration, with 7.5 European
Credit (EC) load. There are 4 hours of lectures and 4 hours
of lab-sessions per week. The first half of the course is spent
on software testing, and the second half on Hoare logic.

The students already have 7.5 EC in set theory and logic in
their first year. However, since the learning goals of the Logic
course focus on proof systems and techniques, it cannot be
taken for granted that students would then know how to apply
the gained knowledge to the programming context. E.g. in
the Logic course domain details are completely abstracted as
nondescript symbols like p or P (x), whereas in programming
we would have arrays that conceptually are quite different
from plain integers. For example when asked to formalize ”the
array a is non-empty”, a participant proposed the following:

(∀i : 0≤i<a.length : a[i]=0)

which highlights the point that knowing the theory does not
automatically means that one knows how to apply it.

There is also some difference in the mindset that one
should take when programming and when formalizing. For
example, when asked to formalize the post-condition ”the
program m(x, y) returns the minimum of the two parameters”
a participant proposed:

retval≤x && retval≤y

Formally, the specification is incomplete. However, from a
programmer’s perspective it makes sense. Most programmers
would understand that m should obviously return either x or y.
So to them, this is an automatic axiom, which of course should
not be taken for granted when we switch role to formalizing
the program’s specification.

The above two examples illustrate the rationale of explicitly
including writing formal specifications as a learning goal of

TABLE I
The set of formalization problems in STV and the students’ performance on
the scale 0..1. The column ”week” gives the week on which the problem is
being worked on. Problems marked with (E) appear in the exam, those with

(F) are optionally offered in FormalZ.

week problems dif N N -FZ avrg
non-FZ FZ

2 MIN 0 64 31 MIN(F) 0.91 0.82
2 isMIN 0 58 12 isMIN(F) 0.75 0.75
3 TRI 0 50 8 TRI(F) 0.83 1.0
3 getMIN 2 51 8 getMIN(F) 0.53 0.86
4 COMMON 2 43 5 getMIN(F) 0.66 0.8
4 SORT 6 43 5 getMIN(F) 0.21 0.5

5 (E) checkAtMost 1 69 8 getMIN(F) 0.73 0.78
5 (E) getMinIndex 2 69 8 getMIN(F) 0.57 0.65

the course STV. To work on this goal a set of 6 formalization
problems are offered as homework to the students over a
period of three weeks, and two more were given as part of
the midterm exam. They are listed in Table I. The first four
are also offered in FormalZ. The column ”dif” indicates the
problem’s difficulty in terms of the total number of quantifiers
(∀ or ∃) appearing in their model solutions.

Using FormalZ is not forced, though encouraged. The
column N shows how many students did the corresponding
problem, and the column N -FZ shows how many of these did
it with FormalZ. All submissions/solutions are graded. The
avarages are shown in Table I, with their scales normalized
to 0..1. The column avrg-non-FZ shows the average of how
well students without FormalZ perform on the corresponding
problem, and the column avrg-FZ shows the average for
students that also used FormalZ. Since the last four problems
do not have FormalZ option, in Table I we compare the
performance of these two groups: for each of these problems
Q, we compare the group of students that did the getMIN
problem on FormalZ as well as Q itself, versus the group of
students that did Q but did not do getMIN with FormalZ.

What we can see in Table I is that as the weeks progressed,
the use of FormalZ decreased. This is unfortunate. Usability
issues are a likely cause for this, though we suspect the tight
schedule of the course also had much influence on this. During
the three weeks allocated to train on formalization (week 2-
4), three chapters from Ammann & Offutt’s Introduction to
Software Testing [14] have to be covered as well as parallel
learning goals, and along with that a project that involves
development and unit testing. Towards the end of these three
weeks, students would have to start preparing for the midterm
exam in week-5, as well as the deadline of the project.

The results in Table I hint that playing FormalZ leads to
learning, or at least to improved results, bearing in mind that
this cannot be statistically confirmed due to the decreasing
participation. The question on whether students had fun using
FormalZ is more difficult to address as ’fun’ is highly subjec-
tive and hard to quantify. The fact that not all students abandon
FormalZ right away despite issues mentioned above can be
seen as a good indication. A look at the backend logs also
indicates that users do spend time on putting towers, which
is the more playful aspect of FormalZ. We conducted a user

Fig. 4. User survey 1. Green: if the user enjoys using FormalZ. Red: if the
user would prefer FormalZ over written exercises.

survey at the end of the course. Only a handful of students
responded to the survey, but all respondents have played For-
malZ in average 12 times and at least 8 times. Selected results
are shown in Figure 4. When asked whether the users enjoy
using FormalZ the responses were mixed (green). Constructing
formulas using blocks seems to be experienced as fun (yellow),
while playing with defense towers less (brown). When asked
whether FormalZ would be preferred over traditional written
exercises (red), we see that some respondents disagree; these
respondents are also the ones that least enjoy the game.

We believe enjoyment is something that can be improved
if we fix the game usabilities issues —in fact one of the
disagreeing respondent indeed elaborated that that is indeed
why he/she does not like the game. On the positive note, one
of the respondent also wrote: ”I had some trouble initially
understanding how to think about the logic, but once that
(finally) clicked it was fun to do.”

IV. UCM CASE: DEDICATED TUTORIAL

In the second setup we use FormalZ to simply introduce,
rather than train, the concept of formalizing informal spec-
ifications. This is done in a 1.5 hour tutorial session. The
teacher first explains the idea and basics of FormalZ (0.5 hour).
Then the students get one hour to work on one problem with
difficulty level (as defined before) 0 and another of level 1.
There are two major differences with the STV setup: (1) it is
a dedicated session, so the students’ attention is not distracted
by other learning goals, and (2) major usability issues from
the STV experience were fixed. The tutorial was given at
the Universidad Complutense de Madrid (UCM), and was
attended by 10 Computer Science master students. At the end
of the tutorial a user survey was conducted; selected results are
shown in Figure 5. Although not everyone agrees, the users
do seem to be more positive than the experience in the STV
course.

V. CONCLUSION

The described cases suggest that with a well designed and
crafted game, learning writing formal specifications with fun
should be possible. The STV Case suggests that playing does
lead to learning, but it also shows that students are sensitive
to usability issues (in fairness, most game players probably
are), while the UCM Case confirms that fixing usability issues
visibly improves the game enjoyment. Usability should not
be underestimated, but it is also something that is difficult

Fig. 5. User survey 2. Green: if the user had fun using FormalZ. Blue: if
the user feels that his/her knowledge in formal specification is improved.

to address through a research team. Professional, or at least
community based, game development and maintenance are
likely needed to support long term and structural use of deep
gamification like FormalZ in education. Balance is always
important in games, and education games are no exception.
Finding a good balance is not trivial. In FormalZ it is the
balance between its training goal and its more playful aspects
such as defense towers, but also the overall balance of the
game embedding in a course. If the goal is to let students learn
and to have fun while doing it, then space and opportunities
should be created to let them have the fun; it is not something
we can just pluck from the air.

Acknowledgement: We are very grateful to EU Erasmus+
for the funding they provide. We also thank Facultad de
Informatica UCM for facilitating the FormalZ tutorial at UCM.

REFERENCES

[1] J. M. Spivey, “An introduction to Z and formal specifications,” Software
Engineering Journal, vol. 4, no. 1, pp. 40–50, 1989.

[2] D. L. Parnas, “Really rethinking formal method,” Computer, no. 1, pp.
28–34, 2010.

[3] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz,
and M. Woo, “The art, science, and engineering of fuzzing: A survey,”
IEEE Transactions on Software Engineering, 2019.

[4] K. Robson, K. Plangger, J. H. Kietzmann, I. McCarthy, and L. Pitt, “Is
it all a game? understanding the principles of gamification,” Business
Horizons, vol. 58, no. 4, pp. 411–420, 2015.

[5] I. S. W. B. Prasetya, C. Q. H. D. Leek, O. Melkonian, J. t. Tusscher,
J. van Bergen, J. M. Everink, T. van der Klis, R. Meijerink, R. Oosen-
brug, J. J. Oostveen, T. van den Pol, and W. M. van Zon, “Having fun
in learning formal specifications,” in Proc. 41st Int. Conf. on Software
Engineering (ICSE). IEEE, 2019.

[6] N. Tillmann, J. de Halleux, and T. Xie, “Pex for fun: Engineering an
automated testing tool for serious games in computer science,” MSR-
TR-2011-41, Tech. Rep., 2011.

[7] Š. Korečko and J. Sorád, “Using simulation games in teaching formal
methods for software development,” in Innovative Teaching Strategies
and New Learning Paradigms in Comp. Prog. IGI Global, 2015.

[8] B. Clegg, J. M. Rojas, and G. Fraser, “Teaching software testing concepts
using a mutation testing game,” in Proc. of the International Conference
on Software Engineering : Software Engineering and Education Track
(ICSE-SEET) 2017. IEEE Press, 2017, pp. 33–36.

[9] A. K. Boyce, “Deep gamification: Combining game-based and play-
based methods,” Ph.D. dissertation, North Carolina State Univ., 2014.

[10] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
International conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2008, pp. 337–340.

[11] M. I. Norton, D. Mochon, and D. Ariely, “The ikea effect: When labor
leads to love,” Journal of consumer psychology, vol. 22, no. 3, 2012.

[12] S. Papert and I. Harel, Constructionism. Ablex Publishing, 1991.
[13] Y. B. Kafai, The Cambridge Handbook of the Learning Sciences.

Cambridge University Press, 2005, ch. Constructionism.
[14] P. Ammann and J. Offutt, Introduction to software testing. Cambridge

University Press, 2016.

	Introduction
	The Design of a Formalization Game
	STV Case: FormalZ in a Course
	UCM Case: Dedicated Tutorial
	Conclusion
	References

