Teaching Software Testing with the Code Defenders

Testing Game:

Gordon Fraser
University of Passau
Passau, Germany

Abstract—Code Defenders is a game that aims to engage
students with software testing. Players compete over a Java class
under test by producing tests and mutants, i.e., artificial faults,
scoring points if tests reveal mutants, or mutants survive tests.
While initially created as a fun way to introduce students to
testing in one-off fun sessions, we have moved to integrating the

game as an assessed core component of a software testing course.

This has shown great potential in engaging students, but many
challenges have been revealed as part of this integration. In this
paper we describe how we integrated Code Defenders into a
software testing course, and how we improved the game in order
to address the resulting challenges.

Index Terms—Software Testing; Gamification; Education

I. INTRODUCTION

Effective software testing is a skill that requires practice and
experience. Engaging students with software testing activities
so that they gain this experience is challenging, since students
tend to prefer spending time on designing and implementing
software, rather than testing it. To address this problem, we
have developed the Code Defenders game [5], in which students
compete over a Java class under test to practice writing effective
tests as well as assessing the weaknesses of existing tests.

The Code Defenders game has already been used at many
different occasions, and we have evidence that Code Defenders
can successfully engage students with writing effective tests
and mutants [6]. However, our ultimate objective was to tightly
integrate Code Defenders in a software testing course. To this
purpose, we made Code Defenders a mandatory part of a
software testing course at the University of Passau [1]. This
integration into a course with multiple sessions has revealed
a number of further challenges that we had to overcome. In
particular, repeated sessions with multiple students require not
only a smooth user experience for the students, but also for
the teacher who has to manage and supervise games. Once
the initial excitement of playing a game weakens, students
often try to minimise their effort which can impede their
learning outcomes. Finally, rewarding students for appropriately
engaging with the game is a challenge, since the game score
may not reflect actual student performance.

In this paper, we describe our experience of using Code
Defenders as part of a mandatory software testing course
for undergraduate students at the University of Passau, in
which students have to play Code Defenders as part of their
coursework. We have refined the integration of Code Defenders
into this course over the last three years, adjusting the Code

Alessio Gambi

University of Passau
Passau, Germany

Experiences and Improvements

José Miguel Rojas
University of Leicester
Leicester, UK

Defenders-related activities to improve the way students interact
with the game as well as to align it with the theoretical
coursework, and we have added new features that aim to
optimise the benefits of using Code Defenders in class.

II. CODE DEFENDERS

Code Defenders [5] is a competitive game where students
play on a Java class under test in one of two roles: attackers
and defenders. Attackers aim to create subtle mutants of the
class under test that evade any existing tests; defenders aim to
write effective tests that reveal as many as possible mutants.
Multiple students can cooperate in teams of attackers and
defenders. Teams only get to see partial information about
the actions of the opponents: Defenders can see which lines
of code were mutated, but they do not get to see the actual
changes. Attackers can see which lines have been covered and
also how frequently, but they do not get to see the actual tests.
This forces players to think about the possible ways in which
the class under test can be broken and tested.

The game uses a scoring system in which attackers receive a
point for each test their mutant survives; once defenders manage
to write a test that detects the mutant they receive as many
points as that mutant has accumulated. Equivalent mutants
may pose a particular challenge, since defenders cannot decide
on equivalence without seeing the underlying source code
change. To accommodate for this, defenders can flag mutants
as suspected equivalent once they believe to have tested the
corresponding code sufficiently. When this happens, the attacker
who created the mutant is challenged to an equivalence duel,
which requires her/him to write a test that proves the mutant
is killable — or to confess that the mutant is truly equivalent,
losing all its points. Throughout the game, players can keep
track of the points through a dedicated scoreboard, while they
can access the overall score of all the players and teams by
means of a public leaderboard. Code Defenders is implemented
as a web-based game; Figure 1 shows the user interface.

III. COURSE INTEGRATION

After several trials of individual sessions using Code Defend-
ers in various software engineering courses, we decided to make
Code Defenders an integral and graded part of a software testing
course. In the first instance, this was an optional software testing
course [1], open to undergraduate and master level students. The
course consisted of weekly two-hour lectures organised around

Class Under Test Write a new JUnit test here =3
public class Lift { import org.junit.Test;
2 Jupits api.As t:
o 0; // default
2 / def. t ic org.hamcrest.Matchers.*;
pr /1 default
ss TestLift {
public Lift(int highestFloor) { out = 4000)
= topFloor = highestFloor; pub: d test() throws Throwable {
} Lift lift = new Lift(5);
Litt.goUp();
public Lift(int highestFloor, int maxRiders) { lift.goUp();
this (highestFloor); assertEquals(2, lift.getCurrentFloor());
capacity = maxRiders;)
} }
public int getTopFloor() {
EP return toprloor;
}
public int getCurrentFloor() {
= turn currentFloor;
)
public int getCapacity() {
[SLive [Killed =] Claimed Equivalent ¥ Equivalent Keyboard Shortcuts @ |~ Editor Mode: default
Mutant restrictions:
Existing Mutants JuUnit tests
B Al Mutants 23 AllTests
o Lift(int)
BB Lift(int) B3 Lift(int, int)
@ ;A‘u;uut Modified line Claim Equivalent
BB getCurrentFloor()
B3 Lift(int, int)
Test = -
B getTopFloor() P P Good
! BB getCurrentFloor() BB getCapacity() (0)

Fig. 1: The defender view, showing the source code with mutant
locations, an editor for JUnit tests, a table of mutants, and a
table of tests.

the standardised International Software Testing Qualification
Board (ISTQB) foundation level tester curriculum [3], plus
weekly exercise sessions with exercise sheets introducing the
technologies implementing the theoretical concepts, including
JUnit. We extended this standard course design with weekly
two-academic-hour practical session, throughout the whole
semester [2]; in these practical sessions students played games
of Code Defenders. The practical sessions consisted of each
student participating in one game per week, alternating the
roles of attacker and defender every week. The difficulty of the
classes under test was increased throughout the semester, but
we used two similar Java classes in successive weeks to ensure
that the students experienced similar challenges when playing
as attackers and defenders. In total, each student participated
in 12 sessions of Code Defenders, and we evaluated the quality
of their mutants and tests throughout the semester to derive a
grade for this aspect of the course, in addition the regular exam-
based course mark. To ensure that successive weeks allow for
increasing difficulty, we have over time added features to Code
Defenders such as support for Mockito, Java classes that have
additional dependencies (i.e., further classes that are required
for testing), or extended assertions (e.g., Hamcrest).
Analysis of our initial course has provided a number of
interesting insights (see the report [1] for full details):

¢ On average, each student submitted 120.54 tests and
158.66 mutants over all games they participated in (average
of 19.11 test per game per student, and 35.92 mutants per
game per student; maximum of 91 tests in a single game,
and 157 mutants in a single game).

« By analysing the branch coverage and mutation scores
of test suites produced in the games throughout the

course, we observed a clear improvement throughout the
semester (Pearson’s correlation between session number
and coverage is 0.51, p-value < 0.001; for mutation scores
the correlation is 0.47, p-value < 0.001).

o Comparison of player actions with exam performance
shows a moderate correlation of -0.58 and -0.38 for
defenders and attackers, respectively (p-values < 0.001),
confirming that better students are more active players.

o We surveyed participating students, and overwhelmingly
students like the integration of Code Defenders.

Following the initial instance in 2017/2018, the course was

changed to a mandatory undergraduate course, but with fewer
overall credits. We therefore changed the course assessment
to be purely based on coursework, consisting of two parts:
One part consists of building test analysis infrastructure (e.g.,
coverage analysis), and the other part consists of playing
Code Defenders. For this we used one introductory session,
followed by 6 weeks of Code Defenders, such that each student
participates three times as defender, and three times as attacker
in Code Defenders games. This reduction of the number of
sessions is proportionate to the reduction in overall credits, but
we found it to be a good balance between providing sufficient
testing experience while maintaining engagement of students
in playing the game. The mode of the Code Defenders sessions
played as part of the course has not changed from the initial
integration [1]. However, we have changed Code Defenders
itself to improve this integration.

IV. IMPROVEMENTS TO RETAIN STUDENT ENGAGEMENT

One problem we observed with students participating in
multiple game sessions is that over time some of them tend
to minimise their effort rather than engaging fully with the
learning objectives. To counter this problem, we added a
number of features to the game. These include some general
improvements to the user experience (e.g., auto-completion for
the code editor, or the possibility to export games to a format
suitable for general IDEs), but also some features specifically
targeting different player roles.

To further engage defenders, we added the following features:

¢ Once students are more experienced in writing JUnit tests,
they tend to submit more tests to the game. The user
interface of Code Defenders proved to be problematic
once the number of tests became too large, as it became
challenging to navigate amongst existing tests. To counter
this problem, we have now organised tests in terms of the
methods they cover, allowing players to search specifically
for tests of interest (see Figure 2).

« In order to encourage players to not only write tests that
are effective, but also nice and maintainable, we analyse
the tests for test smells [7] (using the test smell detector
developed by Peruma et al. [4]) and indicate them in the
test overview (see Figure 2).

o To avoid that defenders tag mutants as equivalent without
having attempted to test for them properly, equivalence
duels can now only be triggered when the mutated code
is already covered by at least one test.

JUnit tests

All Tests
O Lift(int)
BB Lift(int, int)

B3 getTopFloor()

Test

Test .
486 gordon 1 1

ED getCurrentFloor()
B getCapacity()

BB getNumRiders()

Fig. 2: The test accordion summarises all tests in the game
and provides an easy way to navigate them. Tests are shown
in terms of the methods of the class under test they cover. In
addition, general statistics and smells are shown for each test.

Create a mutant here

My mutant is killable
public class Lift { . .
My mutant is equivalent
private int topFloor; I don't know if my mutant is killable
private int currentFloor = uj; 77 aerault
private int capacity = 10; // default
private int numRiders = 0; // default

public Lift(int highestFloor) {
topFloor = highestFloor;
}

public Lift(int highestFloor,
this(highestFloor);
capacity = maxRiders - 1;

int maxRiders) {

b

public int getTopFloor() {
return topFloor;

+

public int getCurrentFloor() {
return currentFloor;

}

Fig. 3: Students can be forced to specify whether they infend to
produce an equivalent or non-equivalent mutant, encouraging
them to think rather than arbitrarily jumbling code. If they are
unsure, they can specify that they do not know. Whether or
not the classification is correct currently has no effects.

For attackers the challenge of players not properly engaging
is somewhat more severe, since it is possible to create mutants
by arbitrarily modifying source code without thinking about the
existing tests. To better engage attackers with testing activities,
we added a number of new features:

e« We observed that defenders tend to wait long before

145 Lift gordon 1 1 HARD n
o Last q Switch
Game Score Name Submissions N Points Total Score
Action Role
more
s - 2 e s om
day
more
s ooz 1w 0 s [
day
147 LiftJunit5 gordon 1 1 HARD u
e Last . Switch
Game Score Name Submissions) Points Total Score
Action Role
00h 48m
2 ren G A -
44s

00h 50m
s S -
28s

Fig. 4: The administrative interface of Code Defenders allows
instructors to create and monitor batches of games. When
monitoring active games, an important aspect is the ability to
spot students who are either not engaged or are struggling.

triggering equivalence duels. While this is generally
desirable for the learning outcomes of the defenders,
it potentially means that attackers do not get sufficient
chances to improve their testing skills. We therefore added
a feature that automatically triggers equivalence duels once
a mutant is covered but not revealed by a configurable
number of tests. For example, mutants in constructors tend
to be executed by every test, and very quickly accumulate
points. By automatically flagging them as equivalent,
attackers need to think about how to test for their mutants
earlier, and this also has the positive side-effect of avoiding
that scores are skewed towards attackers.

o To avoid that attackers arbitrarily edit code without
thinking about the consequences, we added support to
capture their intentions (see Figure 3). For each mutant
attackers submit, they have to specify whether they are
intentionally submitting an equivalent mutant or a mutant
that they believe to be non-equivalent. They can also
submit a mutant and specify that they do not know whether
it is equivalent or not; however, the aim of this feature is
mainly to force them to think about this aspect, so whether
or not they select the correct label for their mutant has
no effect on the game.

o Defenders tend to require a couple of minutes before
they have properly comprehended the class under test and
how to test it. During this time, attackers usually create
mutants blindly, without knowing where defenders are
putting their testing effort. To avoid this problem, we
have added support to allow games to be initialised with
pre-existing tests, such that attackers immediately have to
think about how their mutants could evade existing tests.

V. IMPROVEMENTS TO SUPPORT INSTRUCTORS

Managing games as an instructor can be challenging for a
number of reasons: Students may arrive late or miss their
sessions; the difficulty of the games needs to match the
increasing ability of the students to keep them engaged,
otherwise students may be disengaged from a game or struggle,

[] &) Code Defenders

< c

i Ea Code Defenders

@ localhost:8080/admin/analytics/users

Monitor Games ~ Manage Users Manage Classes

Manage Analysis Analytics =

Users

Show | s0 4 entries Search:

> ID Username Games Played Attacker Score Defender Score Total Score

v 7 gordon 29 49 8 57

Games Played

Games as 1 Games as Defender: 1
Attacker: (44.8%) : (55.2%)

Mutants

Mutants
Submitted:

Per Game (as

7
4 Attacker)

18 Per Game (as
Alive Mutants: 1.38
e e (38.3%) Attacker).
Equivalent 10
Mutants: (21.3%)

Per Game (as
Attacker)

Tests

Per Game (as

Tests Submitted 21
‘ests Submittes Defender);

Per Game (as Per
Mutants Killed: 8 Defender) 0.50 . 0.38

> 9 gordon3 31 18 44 62

Fig. 5: Instructors can view or download statistics on individual
players and the Java classes used for the games.

thus inhibiting the gameplay for their teammates and opponents;
finally, the participation of the students should be rewarded
appropriately by grading their efforts. In order to achieve this,
Code Defenders now has a number of features that support the
management of games as well as that of student cohorts.

In order to manage games, Code Defenders has an admin-
istrative interface in which batches of games can be created.
This includes aspects such as alternating the students’ roles
in successive games and creating teams with balanced ability.
Once the games are in action, the administrative interface offers
an overview that shows the status of each game, as well as the
activities of the individual players (see Figure 4). It has proven
particularly helpful to monitor the time since the last action
for each student, as typically the best sign for a struggling or
disengaged student is the absence of game actions.

To assess the course progress as well as the individual
students’ engagement, Code Defenders offers a number of
statistics and analytics. Figure 5 shows an overview with
statistics for individual players, similar statistics are available
to monitor the suitability of the classes under test. For grading
students, Code Defenders produces killmaps, i.e., it executes all
tests against all mutants, and then marks mutants and tests as
either meaningful or not (i.e., a mutant should survive at least
a test but be killable, a test should detect at least one mutant).
The use of killmaps ensures that the performance of students is
not assessed based on the individual games, since the outcome
of a game is heavily dependent on the participating players
and not just the player’s skills.

VI. CONCLUSIONS

After using Code Defenders as a mandatory component
of a software testing course for three years in a row, we
have overcome a number of challenges and improved Code
Defenders. At this point, Code Defenders is stable and easy to
use. Our current development efforts are on improving a single-
player mode, where players have to solve individual puzzles [6]
on their own. We are also working on new and improved game
modes to continue improving the player experience.

Code Defenders is open-source and available on GitHub:

https://github.com/CodeDefenders
A public installation is also available to play online at:
https://code-defenders.org

ACKNOWLEDGEMENTS

This research has been supported by the European Com-
mission through Erasmus+ project IMPRESS 2017-1-NLO1-
KA203-035259 and DFG grant FR 2955/2-1.

REFERENCES

[1] G. Fraser, A. Gambi, M. Kreis, and J. M. Rojas, “Gam-
ifying a software testing course with code defenders,”
in Proceedings of the 50th ACM Technical Symposium
on Computer Science Education (SIGCSE’2019), ACM,
2019, pp. 571-577.

[2] G. Fraser, A. Gambi, and J. M. Rojas, “A preliminary
report on gamifying a software testing course with the
code defenders testing game,” in Proceedings of the 3rd
European Conference of Software Engineering Education,
ACM, 2018, pp. 50-54.

[3] International Software Testing Qualification Board
(ISTQB), Certified tester foundation level syllabus,
https://www.istqb.org/downloads/send/2-foundation-
level-documents/3-foundation-level-syllabus-2011.html4,
2011.

[4] A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer,
A. Ouni, and F. Palomba, “On the distribution of test
smells in open source android applications: An exploratory
study,” in Proceedings of the 29th Annual International
Conference on Computer Science and Software Engineer-
ing, IBM Corp., 2019, pp. 193-202.

[5] J. M. Rojas and G. Fraser, “Code Defenders: A Mutation
Testing Game,” in The 11th International Workshop on
Mutation Analysis, IEEE, 2016, pp. 162-167.

[6] J. M. Rojas, T. D. White, B. S. Clegg, and G. Fraser,
“Code defenders: Crowdsourcing effective tests and subtle
mutants with a mutation testing game,” in Proceedings
of the 39th International Conference on Software Engi-
neering, IEEE Press, 2017, pp. 677-688.

[7] A. Van Deursen, L. Moonen, A. Van Den Bergh, and
G. Kok, “Refactoring test code,” in Proceedings of the
2nd international conference on extreme programming
and flexible processes in software engineering (XP2001),
2001, pp. 92-95.

