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Abstract— Computer science students often find doing exer-
cises in writing formal structures to be boring, and yet this is a
useful skill to have, both academically and practically. Providing
some of the exercises as a game may help in making the learning
process more engaging, while in addition is also useful as an
automated trainer. However, developing an education game is
quite an endeavour. Additionally, after the development we also
have to maintain the system. This paper presents a template
that can be instantiated for a given target formal system to
give a minimalistic set of game concepts to turn formalization
exercises in this formal system into game based exercises. The
template is derived from a game called FormalZ, as we observe
that its core game concepts are actually general and can be re-
applied to other use cases. Along with the template this paper
also proposes a light weight architecture that would allow game
based exercises to be developed maintained with less effort.

Note for the reviewers: this is an ’Idea Paper’.

I. INTRODUCTION

Teaching Computer Science often involves teaching formal
theories such as predicate logic or automata theories to
students. While students are usually excited on doing pro-
gramming projects, they are often less excited when learning
formal theories. Exercises are often offered to help students
to master the materials, but compelling them to actually
do the exercises often proves to be challenging. A good
example is learning to write formal specifications. Formal
specifications provide a reference for developers defining
what they should build, and how to test the resulting pro-
grams. On the other hand, to actually urging people to write
specifications is also not easy. Developers typically point
out that using formal methods requires lengthy mathematical
proofs involving mathematical notations and concepts alien
to programmers; to quote Parnas [1]: "There is no quicker
way to lose the attention of a room full of programmers
than to show them a mathematical formula". These are valid
concerns, but they are no longer as big obstacles as they
used to be. Modern programming languages like Java or C#
incorporate λ-expressions, allowing programmers to natively
express mathematical concepts like ∀ and ∃. To check the
specifications, there are technologies like bounded model
checking [2], [3] and automated testing [4], [5] that can
do this without requiring any formal proof. Indeed the used
techniques are theoretically incomplete, but they do greatly
strengthen manual testing, at almost no labour cost.
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Just because all the above possibilities exist does not
however mean that developers will actually be excited about
them. The first opportunity to put down a proper knowledge
and attitude foundation would be during their programming
or software engineering education. Unfortunately, subjects
related to formal method are often seen as boring by students,
and too exotic to be actually be used in practice. If left
uncorrected, the attitude will persist when the students later
grow to become real developers.

A possible option is to implement selected exercises as
computer games to provide students with a more exciting
setup to do the exercises. The prospect is indeed enticing.
However, one should be cautioned that developing an edu-
cation game would require quite some investment. It is also
hard to get it right the first time. The success of a game,
and education games are no exception, often depends on
non-functional quality, e.g. its look, the smoothness of its
interface, and the overall game balance, which may require
several iterations to get it right. On top of that, education
games often need additional non-game related functionalities.
E.g. teachers would want to be able flexibly deploy exercised
to students, and then to track their progress. This implies
the need of having some central service where a game
application can connect to and obtain current exercises, and
to send back its player statistics. This service needs to be
developed as well, and maintained. Then along with it we
typically also need a website, where teachers can manage the
exercises (e.g. to create a new one, or edit existing ones) and
their classes, and so on. Given these engineering challenges,
advices e.g. in the form of good practices, experience, or
design templates can save development time, or even help
one avoids project failure.

In a recent project called IMPRESS we studied the use
and development of education games to assist in teaching
software engineering [6], [7], [8], [9]. One of the games
developed in IMPRESS is a game called FormalZ to help
Computer Science students to learn writing pre- and post-
conditions of programs [9], [10]. The game features a graph-
ical game client, a class and exercise management portal,
and analytics, with the whole code base consisting of almost
19K lines of code. Although FormalZ has a specific use
case, we notice that its underlying game concepts can be
generalized to be applied to other kinds of formal exercises.
In this paper we try to capture and explicate these concepts
as a design template that we hope to be reusable and useful
for the community to create other game-based learning tasks.



The presented template is a design template for game-
based exercises in writing formal constructs. It can be
instantiated for exercises on any formal structures (e.g.
functions, finite state automata, LTL formulas) that have
set semantics, and for which a decision procedure exists to
check satisfiability. The template incorporates fund and score
as both game elements and learning instruments, and also
features abstract feedback which would be more suitable for
games (as opposed to detailed feedback as one would get
from e.g. a debugger). We will also discuss some high level
architectural decisions when using the template to develop a
full fledged educational game while minimizing the needed
development and maintenance effort.

II. GAMIFYING FORMALIZATION PROBLEMS

Imagine that we want students to learn to write solutions
in some formal language F —e.g. this can be the language
of predicate logic for formulating pre- or post-conditions as
in FormalZ [10], or a language for describing finite state
automata. To help the students to achieve this learning goal
we provide exercises.

Each exercise would formulate a problem. The students
proceed by constructing their own solutions. In return, they
get feedback on the correctness of their solutions. The pro-
cess is iterated until the students can produce an acceptable
solution. The teacher is assumed to provide a model solution
F∈F . The students are expected to formulate their solution
F ′ in F as well. The solution is accepted as correct if it is
equivalent to F , and else it is rejected. Obviously, to be able
to produce automated feedback, even without gamification,
we need to have a checker (to check if F ≡ F ′), at least for
the space of candidate solutions that students can possibly
construct. A plain "yes/no" checker will make very poor
feedback though; we will return to this later.

Let us now consider what extensions we can do to turn an
exercise such as above into a game. Rather than discussing
e.g. how the game should visually looks like or what kind of
game technology we should use, let us focus on conceptual
extensions. Once the concepts are set, developers can always
design and implement their own visual interpretation of
the game. This is comparable to e.g. the game Monopoly,
that has well defined rules, and thanks to that it allows
companies, hobyists, or even students to create their own
Monopoly computer games. Each implementer can decide if
he/she would prefer a Monopoly with a simple but functional
graphics, or an elaborate one, depending on his/her own
budget.

Every game should have rules, else there is no challenge
to play it. So, to ’gamify’ a learning problem, that is, to
turn it into a game, we will need to add some rules Having
more rules can make a game more interesting and strengthen
players’ sense of achievement, but we should not over-do
it either. Having too many rules may make the game too
distracting with respect to the original learning goal, or too
complicated for its intended users. For example in FormalZ,
the player is required to also defend his/her proposed F ′

against intrusions (attempts to show that it is wrong) by

placing defense towers. Rather than just placing basic towers,
the player can buy more sophisticated towers or upgrade
existing towers. These features were deliberately introduced
to allow users to wander off from the game’s actual learning
goal to simply have fun shooting down intruders. It turned
out that most students never actually explore these features,
which suggests that keeping the game close to the learning
goals is preferred.

There are three game rules in FormalZ that are closely
aligned to its learning goal. These rules are simple, and
general enough to gamify any F exercise. We will discuss the
first two below. The third one, that concerns how the game
gives its feedback, will be discussed in the next section.
• Construction cost rule. The idea is that constructing a

solution costs some fund, which the player only has
in limited amount. To construct a formula in F we
assume F to provide syntactical constructors/operators.
This rule defines the price of using each operator. For
example, if F is the language of predicate logic, the
rule would specify the cost of using operators ∨,¬,∀
etc in a proposed solution F ′.
This rule gives extra depth to the game. By limiting
the initial fund given to the player the game can signal
to the player that the solution they are considering are
just too complicated (they would use more operators
than necessary, and because of that the players would
run out of fund) and that they should thus consider a
different approach. For example when asked to write a
post-condition for the program max(x, y) some students
came with a solution like this (retval below refers to the
program’s return value):

(x > y ≡ retval=x) ∧ (y > x ≡ retval=y)
∧ (x=y ≡ retval=x)

(1)
The solution is correct, and in a way is also intuitive
as it seeks to describe the post-condition in terms of
three disjoint cases of max’s inputs. However, it is
unnecessarily complicated. If each operator costs 10
units, the solution below, which is 40 units cheaper,
would be preferred:

(x ≥ y ≡ retval=x) ∧ (y > x ≡ retval=y) (2)

Also, for new players, lowering the price of some
operators can be used to nudge them to use the right
operators. In the above example, the use of ≡ is unnec-
essary. The formula is also more difficult to understand
due to the bi-directional nature of ≡. Lowering the
price for ’simple’ boolean operators like ∧ and ∨ would
nudge the players towards the solution below, which
is as short as the previous one, but avoids the use of
directional operators like ≡:

(x ≥ y ∧ retval=x) ∨ (y > x ∧ retval=y) (3)

When the players become more experienced, doing the
opposite would nudge them towards trying to find a
different kind of solution as an extra challenge. For



example if we want players to explore the use of ⇒
rather than sticking with simple boolean operators, we
can make the the latter expensive to nudge them to look
for a solution like the one below:

(x ≥ y ⇒ retval=x) ∧ (y > x ⇒ retval=y) (4)

These examples also exemplify ’street wisdom’ that we
know as teachers. They are not essential for under-
standing the main concepts, but can help to improve
the student’s appreciation towards the subject. In the
end, formal specifications also need to be read by
human (e.g. other developers), so simplifying them and
considering different styles of formulation do matter.
Sharing this wisdom manually (e.g. by writing them as
comments in submitted paper solutions) is obviously
very time consuming. But embedding it as a game
would allow the students to discover that wisdom them-
selves, and having fun in learning it as well.

• Scoring rule. Games typically have a concept of
’score’. Scores add excitement and boost the players
sense of achievement. But even in learning, score is
also important as a tool to directly reward the learner
for doing certain steps. In other words, in a learning
setup score also provides some learning feedback.
In our setup, obviously, a correct solution should be
awarded with points. We can however put more infor-
mation in the score. Above we suggest to use fund
and pricing to steer players towards a certain type of
solutions. So, the amount of remaining fund when a
solution is proposed is a metric of how well the solution
matches towards the direction the teacher had in mind.
This should be awarded as well, e.g. by translating it
to some bonus point to be added to the score. So, the
score can be e.g. as follows:

score =

 SW ∗ solved
+ min(C ∗ fund, SW /2 − 1)
+ min(St, SW /2 − 1)

(5)

where fund is the amount of fund that the player has
left, SW is the base score earned when the player solves
the problem, and solved = 1 if the player solves the
problem, and otherwise it is 0. C is some constant
multiplier defining how significant the fund-bonus is.
The St is time-related bonus that we will explain later.
Notice that above scoring scheme award points to the
player, even if he/she does not solve the problem. This
signals that trying is also part of learning, and therefore
should be awarded. Building an incorrect solution, but
using the right operators (according to the pricing pol-
icy) would still earn points. The scheme still guarantees
though, that the score of an incorrect solution can never
be higher than a correct one.
To add a twist to the game, bonus points can be added
to the score based on the time t the player needs to
construct F ′, e.g. this can be:

St = D ∗max(tmax − t, 0) (6)

where tmax is some estimated maximum time that would
still warrant bonus, and D is a constant multiplier.

III. FEEDBACK

Obviously providing a feedback that just says ’yes’ or ’no’
whether the proposed solution is correct is not very useful
as it does not provide any suggestion how the student can
improve his/her solution. This can be improved if F allows
a set semantic and has a SAT solver. That is, there is a
semantic function J.K such that for every F ∈ F , JF K is a
set. The solver is assumed to be able to find an x̄ such that
x̄ ∈ (JF K∪ JF ′K)/(JF ′K∩ JF K), if one exists. Here, F is the
teacher’s solution and F ′ is a student’s proposed solution.
Note that of no such x̄ exists, it implies that JF K = JF ′K;
so in other words, F and F ′ are semantically equivalent. If
an instance of x̄ exists, it is a witness of the misalignment
of F ′ towards F (or a ’counter example’ of the hypothesis
that they are equivalent). This value can be offered to the
player as feedback to help him/her improving F ′. So far this
is a quite common practice when a SAT solver is used in
automated exercises, e.g. as used by the education tool Pex
[11].

Examples of formal structures that satisfy the above re-
quirement are the language of first order predicate logic
(under some restrictions), LTL formulas, and finite state
automata.

There is however one problem: such a feedback is rather
low level and tedious to ’debug’. For example if F is a
language for describing pre- and post-conditions of programs
as in FormalZ, a counter example x̄ would be a vector
describing the value of each program variable of the target
program. The player will then have to figure out which of
these values is or are wrong. Additionally, just from the value
of x̄ itself we cannot see in what way x̄ is a counter example.
It could be a value that satisfies the model solution F , but
disallowed by the student’s proposal F ′, but it can also be
the other way around. Of course, the student can check this
out himself, but this will not work well in a game setup as
that would introduce too much interruption to the game flow.
Indeed, during our experiments with FormalZ students tend
to ignore this feedback.

In FormalZ counter examples are optional feedback, which
the user can get if he/she wants it. The primary feedback
is given, essentially, in terms of four binary indicators [10]
shown in Figure 1 which can easily be displayed as some
graphical sprites or icons as in FormalZ, or as simply as texts
if we have no graphical interface. These indicators provide
faster signaling to the players and hence they benefit the
game flow.

To support these indicators we do need F to support a /
(subtraction) operator. That is, if F and G are formulas from
F , so is F/G. Our intent is to use this operator to test if
there is some part of F that over approximates G, namely by
checking the non-emptiness of F/G. This operator does not
have to be the ’natural’ subtraction operator, but it should be
consistent with our concept of equivalence. More precisely,
it should satisfy:



Fig. 1. Four-indicators feedback a la FormalZ, each indicates if the
corresponding partition is non-empty.

JF K = JF ′K
if and only if

JF/F ′K = ∅ and JF ′/F K = ∅
(7)

For example, if F is the language of predicate logic,
then F/G can be defined as F ∧ ¬G. If F is the language
of functions of type int → int, we can define JF/GK as
{(x, y) | x ∈ int, F (x) > G(x)}.

Let us also assume F to contain an literal > such that
J>K is the set that covers the entire semantical domain of F
(analogous to the literal true in predicate logic). This allows
us to define few other operators:

¬F = >/F
F ∧G = F/¬G

F’s SAT solver is assumed to be able check if JF K is
empty or non-empty, for any F∈F . The previously men-
tioned indicators are defined as follows:

• Indicate whether JF ∧F ′K is non-empty. If so, this tells
the player that at least some element in his/her solution
is good. If this indicator signals negatively, it means that
the player’s solution is completely off.

• Indicate whether JF/F ′K is non-empty. If so, this tells
the player that some aspect of his/her solution under
approximates the real solution.

• Indicate whether JF ′/F K is non-empty. If so, this tells
the player that some aspect of his/her solution over
approximates the real solution.

• Indicate whether J¬F ∧ ¬F ′K is non-empty. Typically
this set would be non-empty. But if it is empty, and
assuming the player does not just submit the trivial >
as his/her F ′, this tells that therefore F must be > itself.

Although each indicator is just a binary yes/no value,
note that each carries additional information, e.g. whether
the proposed F ′ is actually completely off, rather than just
knowing that it is wrong.

Furthermore, despite their simplicity, these indicators now
allow the player to build up his/her solution incrementally:

1) The player starts with some initial F ′ = F ′0. Let k = 0.
2) The player improves F ′k until F ′ does not under

approximate F (so, until JF/F ′K is empty).
3) If F ′ also does not over approximate F (so, if JF ′/F K

is empty), the F ′ is correct and the player has solved
the exercise.

Fig. 2. The architecture of the game FormalZ. The ’game’ itself is a
browser-based application (the ’game client’ in the picture above, but it
also needs the support of other remote services (the white boxes). The
Management Portal is used to allow teachers to create classes, to author
and deploy exercises, and to manage these classes and exercises. Users need
to interact with all these components (indicated by the dashed blue lines)
except the solver.

4) Else, the player extends F ′ by adding a new fragment
F ′k+1. Let F ′ ← F ′ ∧ F ′k+1 and k ← k+1. Go back
to step 2.

Notice that the algorithm above allows the player to build
his/her solution by adding one conjunctive fragment at a
time, and focuses on only improving the new fragment. Note
that the way of employing the SAT solver as was suggesting
at the beginning of this section, although perhaps a more
straight forward way of employing it, would not enable such
an incremental learning process. Having indicators to signal
partial over or under approximation is crucial for such a
process.

IV. ARCHITECTURE CONSIDERATION

The previous section has presented a template of gamified
formalization exercises. For a given F , the template can be
fixed, and would then functionally and fully define a game.
To turn it into an actual computer game, someone has to
implement it. At that point we would then want to consider
aspects such as the look and feel of the game, the interaction
technology to use, and so on. We will put these aspects
outside this paper’s scope though, and will instead turn our
attention to architecture. Architecture is also important, as
choices made there may have a far reaching consequence.

In line with what was remarked in the Introduction, simply
turning a set of game rules into a game implementation is
typically not enough to make an education game. Whereas
an ordinary game only needs to interact with its player, in
an education game we also have a teacher which also needs
to be somehow included in the system.

As an example of a full fledged education game, Figure 2
shows the architecture of FormalZ. Other education games
such as Code Defenders [8] and Pex [11] also have a similar
client-server architecture. As can be seen, it involves multiple
components. The total code base consists of almost 19K lines



of code, developed in a semester by a team of 12 students
including two artists. Additionally, the components in white
are services. So they also need regular maintenance effort
to keep them running. It is fair to say that developing, and
after that also maintaining, an education game like FormalZ
is not a light weight endeavor.

To foster the creation of games based of the template
proposed before we therefore also propose a simpler ar-
chitecture. The least complicated component in FormalZ is
actually the Class and Exercise Management Portal. This
is a website where teachers can create a class and add
students to this class, and create exercises. Students can
browse through available exercises and launch the game
client by selecting one. Students’ solutions and scores are
also stored in a database managed by this component. Yet,
the component takes 25% of the code, and furthermore also
requires regular maintenance. In the simplified architecture
in Figure 3 we propose to remove this component. Rather
than having this separate management component the users
are now responsible for managing their own exercises.

In the simplified architecture, the teacher can create an
exercise in plain text, so there is no need to have a special
content creation software. He/she can publish the exercises
in his/her own website or mail them to the students. Each
exercise would contain the textual description of the exercise,
a unique exercise id, and is ’hashed’. The latter means that it
also contains an encrypted solution that only the solver can
open, and furthermore also allows the solver to verify that
the solution indeed belongs to the said exercise.

To work on an exercise a student simply loads a hashed
exercise into a game client. Each time the student proposes a
solution, the game will need a solver to evaluate the proposal.
In this architecture, the solver is assumed to be deployed as a
service. To check a proposal the game client will send a tuple
(i, E, F ′) where E is the exercise itself, F ′ is the proposed
solution, i is some anonymized id of the student, and may
furthermore identify the class to which he/she belongs to.
The tuple is hashed so that only the solver check its integrity.
In addition to sending back feedback, the solver will also
collect all incoming (i, E, F ′) packages, along with their
scores. It only collects them, and does not try to manage
them.

Notice the new architecture only requires one service
which is only required to store incoming users’ solutions.
The responsibility to post-process the data is put on the users
themselves (or to some party or application on their behalf).
Users, and other services as well (e.g. an analytic service),
can query the data collected by the Solver, and to present
the data in anyway they want. E.g. students would be more
interested in viewing his own data, whereas a teacher would
be interested in the data of all students doing some given
exercise. Privacy is protected as the users’ actual identity
never occurs in the collected solutions, and the integrity of
the data is protected through hashing.

Fig. 3. simple architecture

V. CONCLUSION AND FUTURE WORK

We have presented a general template and a minimalistic
architecture for game based exercises for learning how to
write solutions formally. Although these are inspired by our
experience in developing a real education game, we have
yet to try if this template would indeed work in practice. So,
as future work we want to build a demonstrator as a proof
of concept that a working education game can be created
from the template without using excessive amount of effort.
We can also compare it with e.g. FormalZ to see if a game
created as such does not result in degrading level of user
engagement.

REFERENCES

[1] D. L. Parnas, “Really rethinking formal method,” Computer, no. 1,
pp. 28–34, 2010.

[2] D. Kroening and M. Tautschnig, “Cbmc–c bounded model checker,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2014, pp. 389–391.

[3] J. Barnat, L. Brim, V. Havel, J. Havlíček, J. Kriho, M. Lenčo,
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